【题目】如图,抛物线y=ax2+bx+4与x轴交于A(﹣2,0)、B(4、0)两点,与y轴交于C点.![]()
(1)求抛物线的解析式;
(2)T是抛物线对称轴上的一点,且△ATC是以AC为底的等腰三角形,求点T的坐标;
(3)M、Q两点分别从A、B点以每秒1个单位长度的速度沿x轴同时出发相向而行,当点M到原点时,点Q立刻掉头并以每秒
个单位长度的速度向点B方向移动,当点M到达抛物线的对称轴时,两点停止运动,过点M的直线l⊥x轴交AC或BC于点P.求点M的运动时间t与△APQ面积S的函数关系式,并求出S的最大值.
参考答案:
【答案】
(1)
解:把A(﹣2,0),B(4,0)代入y=ax2+bx+4得:
,
解得:a=﹣
,b=1,
∴抛物线的解析式是:y=﹣
x2+x+4,
答:抛物线的解析式是y=﹣
x2+x+4.
(2)
解:由y=﹣
x2+x+4=﹣
(x﹣1)2+
,得抛物线的对称轴为直线x=1,
直线x=1交x轴于点D,设直线x=1上一点T(1,h),
连接TC、TA,作CE⊥直线x=1,垂足是E,
![]()
由C(0,4)得点E(1,4),
在Rt△ADT和Rt△TEC中,由TA=TC得32+h2=12+(4﹣h)2,
∴h=1,
∴T的坐标是(1,1),
答:点T的坐标是(1,1).
(3)
解:(I)当0<t≤2时,△AMP∽△AOC,
∴
,PM=2t,
AQ=6﹣t,
∴S=
PMAQ=
×2t(6﹣t)=﹣t2+6t=﹣(t﹣3)2+9,
当t=2时S的最大值为8;
(II)当2<t≤3时,
作PM⊥x轴于M,作PF⊥y轴于点F,
![]()
则△COB∽△CFP,
又∵CO=OB,
∴FP=FC=t﹣2,PM=4﹣(t﹣2)=6﹣t,AQ=4+
(t﹣2)=
t+1,
∴S=
PMAQ=
(6﹣t)(
t+1)=﹣
t2+4t+3=﹣
(t﹣
)2+
,
当t=
时,S最大值为
,
综合(I)(II)S的最大值为
,
答:点M的运动时间t与△APQ面积S的函数关系式是S=﹣t2+6t(0<t≤2),S=﹣
t2+4t+3(2<t≤3),S的最大值是
.
【解析】(1)把A、B的坐标代入抛物线的解析式得到方程组,求出方程组的解即可;(2)设直线x=1上一点T(1,h),连接TC、TA,作CE⊥直线x=1,垂足是E,根据TA=TC由勾股定理求出即可;(3)(I)当0<t≤2时,△AMP∽△AOC,推出比例式,求出PM,AQ,根据三角形的面积公式求出即可;(II)当2<t≤3时,作PM⊥x轴于M,PF⊥y轴于点F,表示出三角形APQ的面积,利用配方法求出最值即可.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线y=x2+4x+m(m为常数)经过点(0,4)
(1)求m的值;
(2)将该抛物线先向右、再向下平移得到另一条抛物线.已知这条平移后的抛物线满足下述两个条件:它的对称轴(设为直线l2)与平移前的抛物线的对称轴(设为l1)关于y轴对称;它所对应的函数的最小值为﹣8.
①试求平移后的抛物线所对应的函数关系式;
②试问在平移后的抛物线上是否存在着点P,使得以3为半径的⊙P既与x轴相切,又与直线l2相交?若存在,请求出点P的坐标,并求出直线l2被⊙P所截得的弦AB的长度;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC的面积是63,D是BC上的一点,且BD:CD=2:1,DE∥AC交AB于E,延长DE到F,使FE:ED=2:1,则△CDF的面积是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】在完全相同的四张卡片上分别写有如下四个命题:①半圆所对的弦是直径;②圆既是轴对称图形,也是中心对称图形;③弦的垂线一定经过这条弦所在圆的圆心;④圆内接四边形的对角互补.把这四张卡片放入一个不透明的口袋内搅匀,从口袋内任取一张卡片,则取出卡片上的命题是真命题的概率是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD中,O为AC中点,EF过点O且EF⊥AC分别交DC于点F,交AB于点E,点G是AE中点且∠AOG=30°,给出以下结论: ①∠AFC=120°;
②△AEF是等边三角形;
③AC=3OG;
④S△AOG=
S△ABC
其中正确的是 . (把所有正确结论的序号都选上)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作EF⊥AC于点E,交AB的延长线于点F.

(1)求证:EF是⊙O的切线;
(2)如果∠A=60°,则DE与DF有何数量关系?请说明理由;
(3)如果AB=5,BC=6,求tan∠BAC的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形ABCD中,AB=1,BC=2,BC在x轴上,一次函数y=kx﹣2的图象经过A、C两点,并与y轴交于点E,反比例函数y=
的图象经过点A.
(1)写出点E的坐标;
(2)求一次函数和反比例函数的解析式;
(3)根据图象写出当x>0时,一次函数的值大于反比例函数的值的x的取值范围.
相关试题