【题目】已知抛物线y=x2+4x+m(m为常数)经过点(0,4)
(1)求m的值;
(2)将该抛物线先向右、再向下平移得到另一条抛物线.已知这条平移后的抛物线满足下述两个条件:它的对称轴(设为直线l2)与平移前的抛物线的对称轴(设为l1)关于y轴对称;它所对应的函数的最小值为﹣8.
①试求平移后的抛物线所对应的函数关系式;
②试问在平移后的抛物线上是否存在着点P,使得以3为半径的⊙P既与x轴相切,又与直线l2相交?若存在,请求出点P的坐标,并求出直线l2被⊙P所截得的弦AB的长度;若不存在,请说明理由.
参考答案:
【答案】
(1)
解:依题意得:02+4×0+m=4,解得m=4
(2)
解:①由(1)得:y=x2+4x+4=(x+2)2,
∴对称轴为直线l1:x=﹣2
依题意得平移后的抛物线的对称轴为直线l2:x=2
故设平移后的抛物线所对应的函数关系式为y=(x﹣2)2+k
∵此函数最小值为﹣8,
∴k=﹣8
即平移后的抛物线所对应的函数关系式为y=(x﹣2)2﹣8=x2﹣4x﹣4
②存在.理由如下:
由①知平移后的抛物线的对称轴为直线l2:x=2
当点P在x轴上方时,∵⊙P与x轴相切,
∴令y=x2﹣4x﹣4=3,
解得x=2±
∵此时点P1(2+
,3),P2(2﹣
,3)与直线x=2之距均为
,
∴点P1、P2不合题意,应舍去.
当点P在x轴下方时,
∵⊙P与x轴相切,
∴令y=x2﹣4x﹣4=﹣3,
解得x=2±
(10分)
此时点P3(2+
,﹣3),P4(2﹣
,﹣3)与直线x=2之距均为
,
∵
<3,⊙P3、⊙P4均与直线l2:x=2相交,
∴点P3、P4符合题意.
此时弦AB=2× ![]()
综上,点P的坐标为(2+
,﹣3)或(2﹣
,﹣3),
直线l2被⊙P所截得的弦AB的长为4.
【解析】(1)将(0,4)代入抛物线,得:02+4×0+m=4,解得m=4;(2)①根据(1)求出的抛物线,可知其对称轴,平移后的抛物线的对称轴与平移前的对称轴关于y轴对称,即可求出新抛物线对称轴,再根据第二个条件,最小值为﹣8,即可求出平移后的抛物线的关系式;②该题需要分情况讨论,假设p点存在,且p在x轴上方,根据题意可知,p的纵坐标是3,代入关系式求解,求出p点坐标,在验证该点是否在直线上;若p在y轴下方,则p的纵坐标是﹣3,代入关系式,求出坐标,再进行检验.
【考点精析】解答此题的关键在于理解二次函数的图象的相关知识,掌握二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点,以及对二次函数的性质的理解,了解增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.
-
科目: 来源: 题型:
查看答案和解析>>【题目】矩形、菱形、正方形都是平行四边形,但它们都是有特殊条件的平行四边形,正方形不仅是特殊的矩形,也是特殊的菱形.因此,我们可利用矩形、菱形的性质来研究正方形的有关问题.回答下列问题:

(1)将平行四边形、矩形、菱形、正方形填入它们的包含关系的下图中.
(2)要证明一个四边形是正方形,可先证明四边形是矩形,再证明这个矩形的相等;或者先证明四边形是菱形,在证明这个菱形有一个角是 .
(3)某同学根据菱形面积计算公式推导出对角线长为a的正方形面积是S=0.5a2 , 对此结论,你认为是否正确?若正确,请说明理由;若不正确,请举出一个反例说明. -
科目: 来源: 题型:
查看答案和解析>>【题目】2011年3月11日13时46分日本发生了9.0级大地震,伴随着就是海啸.山坡上有一颗与水平面垂直的大树,海啸过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面(如图所示).已知山坡的坡角∠AEF=23°,测得树干的倾斜角为∠BAC=38°,大树被折断部分和坡面的角∠ADC=60°,AD=4米.

(1)求∠DAC的度数;
(2)求这棵大树折断前高是多少米?(注:结果精确到个位)(参考数据:
) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在边长为8的正方形ABCD中,点O为AD上一动点(4<OA<8),以O为圆心,OA的长为半径的圆交边CD于点M,连接OM,过点M作⊙O的切线交边BC于N.

(1)求证:△ODM∽△MCN;
(2)设DM=x,求OA的长(用含x的代数式表示);
(3)在点O的运动过程中,设△CMN的周长为P,试用含x的代数式表示P,你能发现怎样的结论? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC的面积是63,D是BC上的一点,且BD:CD=2:1,DE∥AC交AB于E,延长DE到F,使FE:ED=2:1,则△CDF的面积是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】在完全相同的四张卡片上分别写有如下四个命题:①半圆所对的弦是直径;②圆既是轴对称图形,也是中心对称图形;③弦的垂线一定经过这条弦所在圆的圆心;④圆内接四边形的对角互补.把这四张卡片放入一个不透明的口袋内搅匀,从口袋内任取一张卡片,则取出卡片上的命题是真命题的概率是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=ax2+bx+4与x轴交于A(﹣2,0)、B(4、0)两点,与y轴交于C点.

(1)求抛物线的解析式;
(2)T是抛物线对称轴上的一点,且△ATC是以AC为底的等腰三角形,求点T的坐标;
(3)M、Q两点分别从A、B点以每秒1个单位长度的速度沿x轴同时出发相向而行,当点M到原点时,点Q立刻掉头并以每秒
个单位长度的速度向点B方向移动,当点M到达抛物线的对称轴时,两点停止运动,过点M的直线l⊥x轴交AC或BC于点P.求点M的运动时间t与△APQ面积S的函数关系式,并求出S的最大值.
相关试题