【题目】已知∠AOB=90°,∠COD=30°.
(1)如图1,当点O、A、C在同一条直线上时,∠BOD的度数是 ;
(2)将∠COD从图1的位置开始,绕点O逆时针方向旋转n°(即∠AOC=n°),且0<n<180.
①如果∠COD的一边与∠AOB的一边垂直,则n= .
②当60<n<90时(如图2),作射线OM平分∠AOC,射线ON平分∠BOD,试求∠MON的度数.
![]()
参考答案:
【答案】(1)60°.(2)①60、90、150.②60°
【解析】
试题分析:(1)根据∠AOB=∠AOD+∠BOD=90°,而∠AOD=∠COD=30°,代入即可求出结论;
(2)①在旋转的过程中,能够发现∠COD的一边与∠AOB的一边垂直共有三种情况,分别求出每种情况下旋转的度数即可;
②根据角与角之间的关系,将直接求∠MON得度数转换成求∠AOM,∠DON的度数,再依照角的关系即可求得结论.
解:(1)∠BOD=∠AOB﹣∠AOD=∠AOB﹣∠COD=90°﹣30°=60°.
故答案为:60°.
(2)①∵0<n<180,
∴分三种情况.
a:点D在射线0B上,∠AOC=∠AOB﹣∠COD=90°﹣30°=60°;
b:点C在射线OB上,∠AOC=∠AOB=90°;
c:点D在AO的延长线上,∠AOC=180°﹣∠COD=180°﹣30°=150°.
综上得n为60、90、150.
故答案为:60、90、150.
②∵∠AOC=n°,OM平分∠AOC,
∴∠AOM=
n°,
∠AOD=∠AOC+∠COD=n°+30°,
∠BOD=∠AOD﹣∠AOB=n°+30°﹣90°=n°﹣60°,
∵ON平分∠BOD,
∴∠DON=
∠BOD=
×(n°﹣60°)=
n°﹣30°,
∠MON=∠AOD﹣∠AOM﹣∠DON=n°+30°﹣
n°﹣(
n°﹣30°)=60°
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知点P(0,m)在y轴的负半轴上,则点M(﹣m,﹣m+1)在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
-
科目: 来源: 题型:
查看答案和解析>>【题目】一次函数y=﹣x+2的图象不经过的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知直线l的解析式为y=
x﹣1,抛物线y=ax2+bx+2经过点A(m,0),B(2,0),D(1,
)三点.
(1)求抛物线的解析式及A点的坐标,并在图示坐标系中画出抛物线的大致图象;
(2)已知点 P(x,y)为抛物线在第二象限部分上的一个动点,过点P作PE垂直x轴于点E,延长PE与直线l交于点F,请你将四边形PAFB的面积S表示为点P的横坐标x的函数,并求出S的最大值及S最大时点P的坐标;
(3)将(2)中S最大时的点P与点B相连,求证:直线l上的任意一点关于x轴的对称点一定在PB所在直线上.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知△ABC中,a、b、c分别是∠A、∠B、∠C的对边,下列条件不能判断△ABC是直角三角形的是( )
A.∠A=∠C﹣∠B
B.a:b:c=2:3:4
C.a2=b2﹣c2
D.a=
,b=
,c=1 -
科目: 来源: 题型:
查看答案和解析>>【题目】等腰△ABC的两边长分别是2和5,则△ABC的周长是( )
A. 9 B. 9或12 C. 12 D. 7或12
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是( )
A. 1,2,1 B. 1,2,2 C. 1,2,3 D. 1,2,4
相关试题