【题目】如图,现有一张边长为
的正方形纸片
,点
为正方形
边上的一点(不与点
,点
重合)将正方形纸片折叠,使点
落在
边上的
处,点
落在
处,
交
于
,折痕为
,连接
,
.则
的周长是______.
![]()
参考答案:
【答案】16.
【解析】
解过点A作AM⊥GH于M,由正方形纸片折叠的性质得出∠EGH=∠EAB=∠ADC=90°,AE=EG,则EG⊥GH,∠EAG=∠EGA,由垂直于同一条直线的两直线平行得出AM∥EG,得出∠EGA=∠GAM,则∠EAG=∠GAM,得出AG平分∠DAM,则DG=GM,由AAS证得△ADG≌△AMG得出AD=AM=AB,由HL证得Rt△ABP≌Rt△AMP得出BP=MP,则△PGC的周长=CG+PG+PC=CG+MG+PM+PC=CG+DG+BP+PC=CD+CB=16.
解:过点A作AM⊥GH于M,如图所示:
![]()
∵将正方形纸片折叠,使点A落在CD边上的G处,
∴∠EGH=∠EAB=∠ADC=90°,AE=EG,
∴EG⊥GH,∠EAG=∠EGA,
∴AM∥EG,
∴∠EGA=∠GAM,
∴∠EAG=∠GAM,
∴AG平分∠DAM,
∴DG=GM,
在△ADG和△AMG中
,
∴△ADG≌△AMG(AAS),
∴AD=AM=AB,
在Rt△ABP和Rt△AMP中
,
∴Rt△ABP≌Rt△AMP(HL),
∴BP=MP,
∴△PGC的周长=CG+PG+PC=CG+MG+PM+PC=CG+DG+BP+PC=CD+CB=8+8=16,
故答案为:16.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,某办公大楼正前方有一根高度是15米的旗杆ED,从办公楼顶端A测得旗杆顶端E的俯角α是45°,旗杆底端D到大楼前梯坎底边的距离DC是20米,梯坎坡长BC是12米,梯坎坡度i=1:
,求大楼AB的高度是多少?(精确到0.1米,参考数据:
≈1.41,
≈1.73,
≈2.45)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知A(-4,n),B(2,-4)是一次函数y=kx+b和反比例函数y=
的图象的两个交点.
(1)求一次函数和反比例函数的解析式;
(2)求△AOB的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知数轴上有A、B、C三点,点A和点B间距20个单位长度且点A、B表示的有理数互为相反数,AC=36,数轴上有一动点P从点A出发,以每秒1个单位长度的速度沿数轴向终点C移动,设移动时间为t秒.

(1)点A表示的有理数是 ,点B表示的有理数是 ,点C表示的有理数是 .
(2)当点P运动到点B时,点Q从点O出发,以每秒6个单位长度的速度沿数轴在点O和点C之间往复运动.
①求t为何值时,点Q第一次与点P重合?
②当点P运动到点C时,点Q的运动停止,求此时点Q一共运动了多少个单位长度,并求出此时点Q在数轴上所表示的有理数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了了解某种电动汽车的性能,某机构对这种电动汽车进行抽检,获得如图中不完整的统计图,其中
,
,
,
表示 一次充电后行驶的里程数分别为
,
,
,
.(1)问这次被抽检的电动汽车共有几辆?并补全条形统计图;
电动汽车一次充电后行驶里程数的条形统计图

电动汽车一次充电后行驶里程数的扇形统计图

(2)求扇形统计图中表示一次充电后行驶路为
的扇形圆心角的度数;(3)估计这种电动汽车一次充电后行驶的平均里程多少
? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,等边△ABC的边长为4cm,动点D从点B出发,沿射线BC方向移动,以AD为边作等边△ADE.
(1)在点D运动的过程中,点E能否移动至直线AB上?若能,求出此时BD的长;若不能,请说明理由;
(2)如图2,在点D从点B开始移动至点C的过程中,以等边△ADE的边AD、DE为边作ADEF.
①ADEF的面积是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由;
②若点M、N、P分别为AE、AD、DE上动点,直接写出MN+MP的最小值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某童装网店批发商批发一种童装,平均每天可售出
件,每件盈利
元.经调查,如果每件童装降价
元,那么平均每天就可多售出
件. (1)设每件童装降价
元,那么每天可售出多少件童装?每件童装的利润是多少元?(用含
的代数式表示)(2)为了迎接“六一”儿童节,商家决定降价促销、尽快减少库存,又想保证平均每天盈利
元,求每件童装应降价多少元?
相关试题