【题目】如图,已知DE∥BC,AO,DF交于点C.∠EAB=∠BCF.
(1)求证:AB∥DF;
(2)求证:OB2=OEOF;
(3)连接OD,若∠OBC=∠ODC,求证:四边形ABCD为菱形.
![]()
参考答案:
【答案】(1)见解析;(2)见解析;(3)见解析.
【解析】分析:(1)由ED∥BC,
可证得
即可证得AB∥CF;
(2)由平行线分线段成比例定理,即可证得
;
(3)首先作辅助线:连接BD,交AC于点P,易证得
,即可证得
,则得到
,又由
,即可证得四边形ABCD为菱形.
详解:证明:(1)∵DE∥BC,
∴
,
∵
∴
∴AB∥DF.
(2)∵DE∥BC,
∴
∵AB∥CD,
∴![]()
∴![]()
∴
连接BD交AO于点P.
∵DE∥BC,
∴
∵
∴![]()
∵
∴
∴![]()
∴
∵
∴
∵DE∥BC,AB∥DF,
∴四边形ABCD是平行四边形,
∴
∴
∴四边形ABCD是菱形.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】(11·湖州)(本小题10分)
如图,已知E、F分别是□ABCD的边BC、AD上的点,且BE=DF。
⑴求证:四边形AECF是平行四边形;
⑵若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长。

-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,点A(3,﹣2)在对称轴为直线x=2的抛物线y=x2+bx+c的图象上,其顶点为B.
(1)求顶点B的坐标;
(2)点C在对称轴上,若△ABC的面积为2,求点C的坐标;
(3)将抛物线向左或右平移,使得新抛物线的顶点落在y轴上,问原抛物线上是否存在点M,平移后的对应点为N,满足OM=ON?如果存在,求出点M,N的坐标;如果不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在数学兴趣小组活动中,小明进行数学探究活动.将边长为2的正方形ABCD与边长为3的正方形AEFG按图1位置放置,AD与AE在同一条直线上,AB与AG在同一条直线上.
(1)小明发现DG=BE且DG⊥BE,请你给出证明.
(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时△ADG的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某校九年级的小红同学,在自己家附近进行测量一座楼房高度的实践活动.如图,她在山坡坡脚A出测得这座楼房的楼顶B点的仰角为60°,沿山坡往上走到C处再测得B点的仰角为45°.已知OA=200m,此山坡的坡比i=
,且O、A、D在同一条直线上.求:(1)楼房OB的高度;
(2)小红在山坡上走过的距离AC.(计算过程和结果均不取近似值)

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知y﹣2与x成正比例,当x=2时,y=6.
(1)求y与x之间的函数解析式.
(2)在所给直角坐标系中画出函数图象.
(3)由函数图象直接写出当﹣2≤y≤2时,自变量x的取值范围.

-
科目: 来源: 题型:
查看答案和解析>>【题目】解方程(组)
(1)2(x﹣1)3+16=0.
(2)
;(3)
. (4)

相关试题