【题目】如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.
① 求证:△ABE≌△CBD;
② 若∠CAE=30°,求∠BDC的度数.
![]()
参考答案:
【答案】①证明见解析②∠BDC=75°
【解析】试题分析:(1)利用“边角边”证明△ABE≌△CBD即可;②先根据等腰直角三角形的锐角都是45°求出∠CAB,再求出∠BAE,然后根据全等三角形对应角相等求出∠BCD,再根据直角三角形两锐角互余其解即可;
试题解析:
(1)证明:∵∠ABC=90°,D为AB延长线上一点,
∴∠ABE=∠CBD=90°,
在△ABE和△CBD中,
,
∴△ABE≌△CBD(SAS);
(2)∵AB=CB,∠ABC=90°,
∴∠CAB=45°,
∵∠CAE=30°,
∴∠BAE=∠CAB-∠CAE=45°-30°=15°,
∵△ABE≌△CBD,
∴∠BCD=∠BAE=15°,
∴∠BDC=90°-∠BCD=90°-15°=75°;
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,以AB为直径的⊙O分别与BC,AC相交于点D,E,BD=CD,过点D作⊙O的切线交边AC于点F.
(1)求证:DF⊥AC;
(2)若⊙O的半径为5,∠CDF=30°,求
的长(结果保留π).
-
科目: 来源: 题型:
查看答案和解析>>【题目】将点D(2,3)先向左平移6个单位,再向下平移3个单位,得到点D’,则点D’的坐标为______.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根为另一个根的2倍,那么称这样的方程为“倍根方程”.例如,一元二次方程x2﹣6x+8=0的两个根是2和4,则方程x2﹣6x+8=0就是“倍根方程”.
(1)若一元二次方程x2﹣3x+c=0是“倍根方程”,则c= ;
(2)若(x﹣2)(mx﹣n)=0(m≠0)是“倍根方程”,求代数式4m2﹣5mn+n2的值;
(3)若关于x的一元二次方程ax2+bx+c=0(a≠0)是“倍根方程”,求a,b,c之间的关系.
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:102×98=______.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知∠A=60°24′,∠B=60.24°,∠C=60°14′24″,则( )
A. ∠A>∠B>∠C B. ∠A>∠B=∠C
C. ∠B>∠C>∠A D. ∠B=∠C>∠A
-
科目: 来源: 题型:
查看答案和解析>>【题目】南海资源丰富,其面积约为350万平方千米,相当于我国的渤海、黄海和东海总面积的3倍.其中350万用科学记数法表示为( )
A.0.35×108
B.3.5×107
C.3.5×106
D.35×105
相关试题