【题目】如图,在△ABC中,以AB为直径的⊙O分别与BC,AC相交于点D,E,BD=CD,过点D作⊙O的切线交边AC于点F.
(1)求证:DF⊥AC;
(2)若⊙O的半径为5,∠CDF=30°,求
的长(结果保留π).
![]()
参考答案:
【答案】(1)证明见解析;(2)
的长为
.
【解析】试题分析:(1)连接OD,由切线的性质即可得出∠ODF=90°,再由BD=CD,OA=OB可得出OD是△ABC的中位线,根据三角形中位线的性质即可得出,根据平行线的性质即可得出∠CFD=∠ODF=90°,从而证出DF⊥AC;
(2)由∠CDF=30°以及∠ODF=90°即可算出∠ODB=60°,再结合OB=OD可得出△OBD是等边三角形,根据弧长公式即可得出结论.
试题解析:(1)证明:连接OD,如图所示.
![]()
∵DF是⊙O的切线,D为切点,
∴OD⊥DF,
∴∠ODF=90°
∵BD=CD,OA=OB,
∴OD是△ABC的中位线,
∴OD∥AC,
∴∠CFD=∠ODF=90°,
∴DF⊥AC.
(2)解:∵∠CDF=30°,
由(1)得∠ODF=90°,
∴∠ODB=180°-∠CDF-∠ODF=60°
∵OB=OD,
∴△OBD是等边三角形,
∴∠BOD=60°,
∴BD弧的长=
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=
(n为常数且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂直为D,若OB=2OA=3OD=6.(1)求一次函数与反比例函数的解析式;
(2)求两函数图象的另一个交点坐标;
(3)直接写出不等式;kx+b≤
的解集.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校为更好地开展“传统文化进校园”活动,随机抽查了部分学生,了解他们最喜爱的传统文化项目类型(分为书法、围棋、戏剧、国画共4类),并将统计结果绘制成如图不完整的频数分布表及频数分布直方图.
最喜爱的传统文化项目类型频数分布表


根据以上信息完成下列问题:
(1)直接写出频数分布表中a的值;
(2)补全频数分布直方图;
(3)若全校共有学生1500名,估计该校最喜爱围棋的学生大约有多少人?
-
科目: 来源: 题型:
查看答案和解析>>【题目】小明在学习三角形内角和定理时,自己做了如下推理过程,请你帮他补充完整.
已知:如图,△ABC中,∠A、∠B、∠C是它的三个内角,那么这三个内角的和等于多少?为什么?

解:∠A+∠B+∠C=180°
理由:作∠ACD=∠A,并延长BC到E
∠1=∠A(已作)
∴AB∥CD (_________________________)
∴∠B=_____(_________________________)
而∠ACB+∠1+∠2=180°
∴∠ACB+_____+_____=180°(等量代换)
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算(6x5﹣15x3+9x)÷3x的结果是( )
A. 6x4﹣15x2+9 B. 2x5﹣5x3+9x C. 2x4﹣5x2+3 D. 2x4﹣15x2+3
-
科目: 来源: 题型:
查看答案和解析>>【题目】小明在将一个多边形的内角逐个相加时,把其中一个内角多加了一次,错误地得到内角和为840°,则这个多边形的边数是___________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在ABCD中,E是BC的中点,连接AE并延长交DC的延长线于点F.

(1)求证:AB=CF;
(2)连接DE,若AD=2AB,求证:DE⊥AF.
相关试题