【题目】已知△ABC的内角A、B、C的对边分别为a、b、c,且3bcos A=ccos A+acosC.
(1)求tanA的值;
(2)若a=4
,求△ABC的面积的最大值.
参考答案:
【答案】
(1)解:∵3bcos A=ccos A+acosC,∴3sinBcos A=sinCcos A+sinAcosC=sin(A+C)=sinB.
sinB≠0,化为:cosA=
,∴sinA=
=
,可得tanA=
= ![]()
(2)解:32=a2=b2+c2﹣2bccosA≥2bc
=
bc,可得bc≤24,当且仅当b=c=2
取等号.
∴S△ABC=
≤
=8
.
∴当且仅当b=c=2
时,△ABC的面积的最大值为8 ![]()
【解析】(1)由3bcos A=ccos A+acosC,可得3sinBcos A=sinCcos A+sinAcosC,化为:3cosA=1.可得sinA=
,可得tanA=
.(2)32=a2=b2+c2﹣2bccosA,再利用基本不等式的性质可得bc≤24.利用S△ABC=
即可得出.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知事件“在矩形ABCD的边CD上随机取一点P,使△APB的最大边是AB”发生的概率为
,则
=( )
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数f(x)=
,若关于x的不等式f2(x)+af(x)>0恰有两个整数解,则实数a的取值范围是( )
A.(﹣
,﹣
)
B.[
,
)
C.(﹣
,﹣
]
D.(﹣1,﹣
] -
科目: 来源: 题型:
查看答案和解析>>【题目】数列{an}中,a2n=a2n﹣1+(﹣1)n , a2n+1=a2n+n,a1=1则a100= .
-
科目: 来源: 题型:
查看答案和解析>>【题目】某同学在研究性学习中,收集到某制药厂今年前5个月甲胶囊生产产量(单位:万盒)的数据如下表所示:
月份x
1
2
3
4
5
y(万盒)
4
4
5
6
6
(1)该同学为了求出y关于x的线性回归方程
=
+
,根据表中数据已经正确计算出
=0.6,试求出
的值,并估计该厂6月份生产的甲胶囊产量数;
(2)若某药店现有该制药厂今年二月份生产的甲胶囊4盒和三月份生产的甲胶囊5盒,小红同学从中随机购买了3盒甲胶囊,后经了解发现该制药厂今年二月份生产的所有甲胶囊均存在质量问题.记小红同学所购买的3盒甲胶囊中存在质量问题的盒数为ξ,求ξ的分布列和数学期望. -
科目: 来源: 题型:
查看答案和解析>>【题目】在如图所示的几何体中,平面ADNM⊥平面ABCD,四边形ABCD是菱形,ADNM是矩形,
,AB=2,AM=1,E是AB的中点. 
(1)求证:平面DEM⊥平面ABM;
(2)在线段AM上是否存在点P,使二面角P﹣EC﹣D的大小为
?若存在,求出AP的长;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,设椭圆C1:
+
=1(a>b>0),长轴的右端点与抛物线C2:y2=8x的焦点F重合,且椭圆C1的离心率是
. 
(1)求椭圆C1的标准方程;
(2)过F作直线l交抛物线C2于A,B两点,过F且与直线l垂直的直线交椭圆C1于另一点C,求△ABC面积的最小值,以及取到最小值时直线l的方程.
相关试题