【题目】长方体的长为20cm,宽为10cm,高为15cm,点B离点C5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B去吃一滴蜜糖,需要爬行的最短距离是多少?
![]()
参考答案:
【答案】需要爬行的最短距离是15
cm.
【解析】
首先将长方体沿CF、FG、GH剪开,向右翻折,使面FCHG和面ADCH在同一个平面内,连接AB;或将长方体沿DE、EF、FC剪开,向上翻折,使面DEFC和面ADCH在同一个平面内,连接AB,或将长方体沿CF、CH、FG剪开,向下翻折,使面HGFC和下面在同一个平面内,连接AB,然后分别在Rt△ABD与Rt△ABH与Rt△ABC,利用勾股定理求得AB的长,比较大小即可求得需要爬行的最短路程.
将长方体沿CF、FG、GH剪开,向右翻折,使面FCHG和面ADCH在同一个平面内,
连接AB,如图1,
由题意可得:BD=BC+CD=5+10=15cm,AD=CH=15cm,
在Rt△ABD中,根据勾股定理得:
将长方体沿DE、EF、FC剪开,向上翻折,使面DEFC和面ADCH在同一个平面内,
连接AB,如图2,
由题意得:BH=BC+CH=5+15=20cm,AH=10cm,
在Rt△ABH中,根据勾股定理得:
则需要爬行的最短距离是15
cm.
连接AB,如图3,
由题意可得:BB′=B′E+BE=15+10=25cm,AB′=BC=5cm,
在Rt△AB′B中,根据勾股定理得:
∵
∴则需要爬行的最短距离是
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形纸片ABCD的长AD=9 cm,宽AB=3 cm,将其沿EF折叠,使点D与点B重合.
(1)求证:DE=BF;
(2)求BF的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产95件,每件利润6元.每提高一个档次,每件利润增加2元,但一天产量减少5件.
(1)若生产第
档次的产品一天的总利润为
元(其中
为正整数,且1≤
≤10),求出
关于
的函数关系式;(2)若生产第x档次的产品一天的总利润为1120元,求该产品的质量档次.
-
科目: 来源: 题型:
查看答案和解析>>【题目】观察下列等式:71=7,72=49,73=343,74=2 401,75=16 807,76=117 649,…,那么:71+72+73+…+72 016的末位数字是( )
A. 9B. 7C. 6D. 0
-
科目: 来源: 题型:
查看答案和解析>>【题目】把四张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个长为
,宽为
的长方形内,该长方形内部未被卡片覆盖的部分用阴影表示.
(1)能否用只含
的式子表示出图②中两块阴影部分的周长和?_____(填“能”或“不能”);(2)若能,请你用只含
的式子表示出中两块阴影部分的周长和;若不能,请说明理由_____. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图A在数轴上对应的数为-2.
(1)点B在点A右边距离A点4个单位长度,则点B所对应的数是_____.
(2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点B以每秒3个单位长度沿数轴向右运动.现两点同时运动,当点A运动到-6的点处时,求A、B两点间的距离.
(3)在(2)的条件下,现A点静止不动,B点以原速沿数轴向左运动,经过多长时间A、B两点相距4个单位长度.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:a、b为有理数,下列说法:①若 a、b互为相反数,则
;②若
则
;③若
,则
;④若
,则
是正数.其中正确的有A.1个B.2个C.3个D.4个
相关试题