【题目】如图为一段圆弧形弯道,弯道长12π米,圆弧所对的圆心角是81°. ![]()
(1)用直尺和圆规作出圆弧所在的圆心O;(不写作法,保留作图痕迹)
(2)求这段圆弧的半径R.
参考答案:
【答案】
(1)解:如图,点O即为所求点;
![]()
(2)解:根据题意得:
=12π,
解得:R=
,
答:这段圆弧的半径为
米
【解析】(1)弧上任取三点A、B、C,连结AB、BC,分别作AB和BC的垂直平分线,两垂直平分线的交点为点O;(2)根据弧长公式列出关于R的方程,解之可得.
【考点精析】解答此题的关键在于理解垂径定理的相关知识,掌握垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧,以及对圆心角、弧、弦的关系的理解,了解在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等;在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
-
科目: 来源: 题型:
查看答案和解析>>【题目】小明和爸爸周末步行去游泳馆游冰,爸爸先出发了一段时间后小明才出发,途中小明在离家1400米处的报亭休息了一段时间后继续按原来的速度前往游泳馆.两人离家的距离y(米)与小明所走时间x(分钟)之间的函数关系如图所示,请结合图象信息解答下列问题:
(1)小明出发_____分钟后第一次与爸爸相遇;
(2)分别求出爸爸离家的距离y1和小明到达报亭前离家的距离y2与时间x之间的函数关系式;
(3)求小明在报亭休息了多长时间遇到姗姗来迟的爸爸;

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知直线y=kx+b经过点B(1,4),且与直线y=﹣x﹣11平行.
(1)求直线AB的解析式并求出点C的坐标;
(2)根据图象,写出关于x的不等式0<2x﹣4<kx+b的解集;
(3)现有一点P在直线AB上,过点P作PQ∥y轴交直线y=2x﹣4于点Q,若线段PQ的长为3,求P点坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】解下列方程:
(1)x2+x=0;
(2)x2﹣4x﹣1=0. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系xOy中,点O是边长为2的正方形ABCD的中心.

(1)若函数y=x2+m的图象过点C,求这个函数的解析式;并判断其函数图象是否过A点.
(2)若将(1)中的函数图象先向右平移1个单位,再向上平移2个单位,直接写出平移后函数的解析式和顶点坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】抛物线y=ax2+bx+c上,部分点的横、纵坐标x、y的对应值如下表:
x
…
﹣2
﹣1
0
1
2
…
y
…
0
﹣4
﹣4
0
8
(1)根据上表填空; ①方程ax2+bx+c=0的两个根分别是和 .
②抛物线经过点(﹣3,);
③在对称轴左侧,y随x增大而;
(2)求抛物线y=ax2+bx+c的解析式. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△OAB中,OA=OB=10,∠AOB=70°,以点O为圆心,6为半径的优弧
分别交OA、OB于点M,N. 
(1)点P在右半弧上(∠BOP是锐角),将OP绕点O逆时针旋转70°得OP′.求证:AP=BP′;
(2)点T在左半弧上,若AT与弧相切,求点T到OA的距离;
(3)设点Q在优弧
上,当△AOQ的面积最大时,直接写出∠BOQ的度数.
相关试题