【题目】已知关于x的一元二次方程:x2﹣(m﹣3)x﹣m=0
(1)证明原方程有两个不相等的实数根;
(2)若抛物线y=x2﹣(m﹣3)x﹣m与x轴交于A(x1,0),B(x2,0)两点,则A,B两点间的距离是否存在最大或最小值?若存在,求出这个值;若不存在,请说明理由.(友情提示:AB=|x1﹣x2|)
参考答案:
【答案】(1)证明见解析;(2)存在,AB有最小值为2
.
【解析】分析:(1)根据根的判别式,可得答案;(2)根据根与系数的关系,可得A、B间的距离,根据二次函数的性质,可得答案.
本题解析:
(1)△=[﹣(m﹣3)]2﹣4(﹣m)=m2﹣2m+9=(m﹣1)2+8,
∵(m﹣1)2≥0,
∴△=(m﹣1)2+8>0,
∴原方程有两个不等实数根;
(2)存在,
由题意知x1,x2是原方程的两根,
∴x1+x2=m﹣3,x1x2=﹣m.
∵AB=|x1﹣x2|,
∴AB2=(x1﹣x2)2=(x1+x2)2﹣4x1x2=(m﹣3)2﹣4(﹣m)=(m﹣1)2+8,
∴当m=1时,AB2有最小值8,
∴AB有最小值,即AB=
=2
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某镇道路改造工程,由甲、乙两工程队合作完成.甲工程队单独施工比乙工程队单独施工多用30天完成此项工程,甲工程队30天完成的工程与甲、乙两工程队10天完成的工程相等.
(1)求甲、乙两工程队单独完成此项工程各需要多少天?
(2)如果甲工程队施工每天需付施工费1万元,乙工程队施工每天需付施工费2.5万元,甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数y=﹣x2+2x+m.
(1)如果二次函数的图象与x轴有两个交点,求m的取值范围;
(2)如图,二次函数的图象过点A(3,0),与y轴交于点B,直线AB与这个二次函数图象的对称轴交于点P,求点P的坐标.
(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形
中,点A的坐标是
,点C的纵坐标是4,则B点的纵坐标是___________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】图1、图2分别是
的网格,网格中每个小正方形的边长均为1,线段
的端点在小正方形的顶点上,请在图1、图2中各画一个图形,分别满足以下要求:(1)在图1中画一个以线段
为一边且周长为
的平行四边形,所画图形的各顶点必须在小正方形的顶点上.(2)在图2中画一个以线段
为一边的等腰钝角三角形,所画等腰三角形的各顶点必须在小正方形的顶点上,并直接写出该等腰三角形的周长是______.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件.

(1)写出商场销售这种工具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;
(2)求销售单价为多少元时,该文具每天的销售利润最大;
(3)商场的营销部结合上述情况,提出了A、B两种营销方案:
方案A:该文具的销售单价高于进价且不超过30元;
方案B:每天销售量不少于10件,且每件文具的利润至少为25元.
请比较哪种方案的最大利润更高,并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】体育委员统计了全班同学60秒跳绳的次数,并列出下面的频数分布
次数
60≤x<80
80≤x<100
100≤x<120
频数
1
2
25
次数
120≤x<140
140≤x<160
160≤x<180
频数
15
5
2
(1)全班有多少学生?
(2)组距是多少?组数是多少
(3)跳绳次数x在100≤x<140范围的学生占全班学生的百分之几?
(4)画出适当的统计图表示上面的信息.
(5)你怎样评价这个班的跳绳成绩?
相关试题