【题目】如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标为(6,6),将正方形ABCO绕点C逆时针旋转角度α(0°<α<90°),得到正方形CDEF,ED交线段AB于点G,ED的延长线交线段OA于点H,连CH、CG.
![]()
(1)求证:△CBG≌△CDG;
(2)求∠HCG的度数;并判断线段HG、OH、BG之间的数量关系,说明理由;
(3)连结BD、DA、AE、EB得到四边形AEBD,在旋转过程中,四边形AEBD能否为矩形?如果能,请求出点H的坐标;如果不能,请说明理由.
参考答案:
【答案】(1)证明见解析;(2)45°;HG= HO+BG;(3)(2,0).
【解析】
试题分析:(1)求证全等,观察两个三角形,发现都有直角,而CG为公共边,进而再锁定一条直角边相等即可,因为其为正方形旋转得到,所以边都相等,即结论可证.
(2)上问的结论,本题一般都要使用才能求出结果.所以由三角形全等可以得到对应边、角相等,即BG=DG,∠DCG=∠BCG.同第一问的思路你也容易发现△CDH≌△COH,也有对应边、角相等,即OH=DH,∠OCH=∠DCH.于是∠GCH为
四角的和,四角恰好组成直角,所以∠GCH=90°,且容易得到OH+BG=HG.
(3)四边形AEBD若为矩形,则需先为平行四边形,即要对角线互相平分,合适的点只有G为AB中点的时候.由上几问知DG=BG,所以此时同时满足DG=AG=EG=BG,即四边形AEBD为矩形.求H点的坐标,可以设其为(x,0),则OH=x,AH=6-x.而BG为AB的一半,所以DG=BG=AG=3.又由(2),HG=x+3,所以Rt△HGA中,三边都可以用含x的表达式表达,那么根据勾股定理可列方程,进而求出x,推得H坐标.
试题解析:(1)∵正方形ABCO绕点C旋转得到正方形CDEF
∴CD=CB,∠CDG=∠CBG=90°
在Rt△CDG和Rt△CBG中
![]()
∴△CDG≌△CBG(HL),
(2)∵△CDG≌△CBG
∴∠DCG=∠BCG,DG=BG
在Rt△CHO和Rt△CHD中
![]()
∴△CHO≌△CHD(HL)
∴∠OCH=∠DCH,OH=DH
∴![]()
HG=HD+DG=HO+BG
(3)四边形AEBD可为矩形
如图,
![]()
连接BD、DA、AE、EB
因为四边形AEBD若为矩形,则需先为平行四边形,即要对角线互相平分,合适的点只有G为AB中点的时候.
因为DG=BG,所以此时同时满足DG=AG=EG=BG,即平行四边形AEBD对角线相等,则其为矩形.
所以当G点为AB中点时,四边形AEBD为矩形.
∵四边形DAEB为矩形
∴AG=EG=BG=DG
∵AB=6
∴AG=BG=3
设H点的坐标为(x,0)
则HO=x
∵OH=DH,BG=DG
∴HD=x,DG=3
在Rt△HGA中
∵HG=x+3,GA=3,HA=6-x
∴(x+3)2=32+(6-x)2
∴x=2
∴H点的坐标为(2,0).
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)、菱形
的边长1,面积为
,则
的值为( )A、
B、
C、
D、
(2)、如图,ABCD是正方形,E是CF上一点,若DBEF是菱形,则∠EBC=

-
科目: 来源: 题型:
查看答案和解析>>【题目】程大位所著《算法统宗》是一部中国传统数学重要的著作.在《算法统宗》中记载:“平地秋千未起,踏板离地一尺.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几?”【注释】1步=5尺.
译文:“当秋千静止时,秋千上的踏板离地有1尺高,如将秋千的踏板往前推动两步(10尺)时,踏板就和人一样高,已知这个人身高是5尺.美丽的姑娘和才子们,每天都来争荡秋千,欢声笑语终日不断.好奇的能工巧匠,能算出这秋千的绳索长是多少吗?”
如图,假设秋千的绳索长始终保持直线状态,OA是秋千的静止状态,A是踏板,CD是地面,点B是推动两步后踏板的位置,弧AB是踏板移动的轨迹.已知AC=1尺,CD=EB=10尺,人的身高BD=5尺.设绳索长OA=OB=x尺,则可列方程为
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,连接DE、BF、BD.
(1)求证:△ADE≌△CBF ;
(2)当AD⊥BD时,请你判断四边形BFDE的形状,并说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】对于实数a、b,定义一种运算“
”为:ab=a2 +ab-2,有下列命题:①1
3=2; ②方程x
1=0的根为:x1 =-2,x2 =1; ③不等式组
的解集为:-1<x<4; ④点(
,
)在函数y=x
(-1)的图象上. 其中正确的是( )
A. ①②③④ B. ①③ C. ①②③ D. ③④
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将-2,-1,0,1,2,3,4,5,6,7这10个数分别填写在五角星中每两条线的交点处(每个交点处只填写一个数),将每一条线上的4个数相加,共得5个数,设为a1,a2,a3,a4,a5.
(1)求
(a1+a2+a3+a4+a5)的值;(2)交换其中任何两位数的位置后,
(a1+a2+a3+a4+a5)的值是否改变?并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在长和宽分别是a,b的长方形的四个角都剪去一个边长为x的正方形,折叠后,做成一无盖的盒子(单位:cm).
(1)用a,b,x表示纸片剩余部分的面积;
(2)用a,b,x表示盒子的体积;
(3)当a=10,b=8且剪去的每一个小正方形的面积等于4 cm2时,求剪去的每一个正方形的边长及所做成的盒子的体积.

相关试题