【题目】如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为( ) ![]()
A.2 ![]()
B.8
C.2 ![]()
D.2 ![]()
参考答案:
【答案】D
【解析】解:∵⊙O的半径OD⊥弦AB于点C,AB=8, ![]()
∴AC=
AB=4,
设⊙O的半径为r,则OC=r﹣2,
在Rt△AOC中,
∵AC=4,OC=r﹣2,
∴OA2=AC2+OC2 , 即r2=42+(r﹣2)2 , 解得r=5,
∴AE=2r=10,
连接BE,
∵AE是⊙O的直径,
∴∠ABE=90°,
在Rt△ABE中,
∵AE=10,AB=8,
∴BE=
=
=6,
在Rt△BCE中,
∵BE=6,BC=4,
∴CE=
=
=2
.
故选:D.
先根据垂径定理求出AC的长,设⊙O的半径为r,则OC=r﹣2,由勾股定理即可得出r的值,故可得出AE的长,连接BE,由圆周角定理可知∠ABE=90°,在Rt△BCE中,根据勾股定理即可求出CE的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于x的一元二次方程:x2﹣2(m+1)x+m2+5=0有两个不相等的实数根.
(1)求m的取值范围;
(2)若原方程的两个实数根为x1、x2 , 且满足x12+x22=|x1|+|x2|+2x1x2 , 求m的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC内接于⊙O,AD平分∠BAC交⊙O于点D,过点D作DE∥BC交AC的延长线于点E.

(1)试判断DE与⊙O的位置关系,并证明你的结论;
(2)若∠E=60°,⊙O的半径为5,求AB的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=﹣
x2+bx+c与一次函数y=﹣x+4分别交y轴、x轴于A、B两点.
(1)求这个抛物线的解析式;
(2)设P(x,y)是抛物线在第一象限内的一个动点,过点P作直线PH⊥x轴于点H,交直线AB于点M.
①求当x取何值时,PM有最大值?最大值是多少?
②当PM取最大值时,以A、P、M、N为顶点构造平行四边形,求第四个顶点N的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC中,AC=BC,∠ACB=90°,直角∠DFE的顶点F是AB中点,两边FD,FE分别交AC,BC于点D,E两点,当∠DFE在△ABC内绕顶点F旋转时(点D不与A,C重合),给出以下个结论:①CD=BE ②四边形CDFE不可能是正方形 ③△DFE是等腰直角三角形 ④S四边形CDFE=
S△ABC , 上述结论中始终正确的有( ) 
A.①②③
B.②③④
C.①③④
D.①②④ -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(
,1),下列结论:①ac<0;②a+b=0;③4ac﹣b2=4a;④a+b+c<0.其中正确结论的个数是( ) 
A.1
B.2
C.3
D.4 -
科目: 来源: 题型:
查看答案和解析>>【题目】若一三角形的三边长分别为5、12、13,则此三角形的内切圆半径为 .
相关试题