【题目】在等边△ABC中,点E是AB上的动点,点E与点A、B不重合,点D在CB的延长线上,且EC=ED.
(1)如图1,当BE=AE时,求证:BD=AE;
(2)当BE≠AE时,“BD=AE”能否成立?若不成立,请直接写出BD与AE数理关系,若成立,请给予证明.
![]()
参考答案:
【答案】(1)证明见解析
(2)AE=DB,理由见解析
【解析】
(1)由等边三角形的性质得出AE=BE,∠BCE=30°,再根据ED=EC,得出∠D=∠BCE=30°,再证出∠D=∠DEB,得出DB=BE,从而证出AE=DB;
(2)作辅助线得出等边三角形AEF,得出AE=EF,再证明三角形全等,得出DB=EF,证出AE=DB.
(1)∵△ABC是等边三角形,
∴∠ABC=∠ACB=60°,
∵AE=BE,△ABC是等边三角形
∴∠BCE=30°,
∵ED=EC,
∴∠D=∠BCE=30°.
∵∠ABC=∠D+∠BED,
∴∠BED=30°,
∴∠D=∠BED,
∴BD=BE.
∴AE=DB.
![]()
(2)AE=DB;
![]()
理由:过点E作EF∥BC交AC于点F.如图2所示:
∴∠AEF=∠ABC,∠AFE=∠ACB.
∵△ABC是等边三角形,
∴∠ABC=∠ACB=∠A=60°,AB=AC=BC,
∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°,
即∠AEF=∠AFE=∠A=60°,
∴△AEF是等边三角形.
∴∠DBE=∠EFC=120°,∠D+∠BED=∠FCE+∠ECD=60°,
∵DE=EC,
∴∠D=∠ECD,
∴∠BED=∠ECF.
在△DEB和△ECF中,
![]()
∴△DEB≌△ECF(AAS),
∴DB=EF,
∴AE=BD.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在直角坐标系中,△ABO的顶点坐标分别为O(0,0)、A(2a,0)、B(0,﹣a),线段EF两端点坐标为E(﹣m,a+1),F(﹣m,1)(2a>m>a);直线l∥y轴交x轴于P(a,0),且线段EF与CD关于y轴对称,线段CD与NM关于直线l对称.
(1)求点N、M的坐标(用含m、a的代数式表示);
(2)△ABO与△MFE通过平移能重合吗?能与不能都要说明其理由,若能请你说出一个平移方案(平移的单位数用m、a表示)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在ABCD中,E、F分别为边AD、BC的中点,对角线AC分别交BE,DF于点G、H.求证:AG=CH.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=AC,∠A=40°,D、E分别是AB、AC上的不动点,且BD+CE=BC,点P是BC上一动点,
(1)当PC=CE时,试求∠DPE的度数
(2)当PC=BD时,∠DPE的度数还会与(1)的结果相同吗?若相同请写出求解过程,若不相同,请说明理由

-
科目: 来源: 题型:
查看答案和解析>>【题目】请观察如下算式,并解答问题:
15×35; 16×34; 17×33; 18×32; 19×31.
(1)请根据上述算式规律写下去,其乘积的最大值是_______.
(2)设“a2﹣b2=15×35”试求a,b并将其余算式写成两数字平方差的形式;
(3)试由(1)、(2)猜测一个一般性的结论.(不要求证明)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在ABCD中,点E、F分别在边AB和CD上,下列条件不能判定四边形DEBF一定是平行四边形的是( )

A.AE=CFB.DE=BFC.∠ADE=∠CBFD.∠AED=∠CFB
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,BC是⊙O的直径,A是⊙O上一点,过点C作⊙O的切线,交BA的延长线于点D,取CD的中点E,AE的延长线与BC的延长线交于点P.

(1)说明:AP是⊙O的切线;
(2)若OC=CP,AB=6,求CD的长.
相关试题