【题目】如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为4,则BE等于________.
![]()
参考答案:
【答案】2
【解析】
作BF⊥CD交DC的延长线于点F,根据条件可证得∠ABE=∠CBF,且由已知∠AEB=∠CFB=90°,AB=BC,所以△ABE≌△CBF,可得BE=BF;四边形ABCD的面积等于新正方形FBED的面积,即可得BE=2.
如图,过B作BF垂直DC的延长线于点F,
∵∠ABC=∠CDA=90°,BF⊥CD,
∴∠ABE+∠EBC=∠CBF+∠EBC,∴∠ABE=∠CBF,
又∵BE⊥AD,BF⊥DF,且AB=BC,
∴△ABE≌△CBF,即BE=BF,
∵BE⊥AD,∠CDA=90°,BE=BF,
∴四边形BEDF为正方形,
由以上得四边形ABCD的面积等于正方形BEDF的面积,即等于4,
∴BE=2,
故答案为:2.
-
科目: 来源: 题型:
查看答案和解析>>【题目】有理数a,b在数轴上的表示如图所示,则下列结论中: ①ab<0, ②
<0,③a+b<0,④a-b<0,⑤a<|b|,⑥-a>-b,正确的有( )
A. 2个 B. 3个 C. 4个 D. 5个
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了了解某校九年级(1)班学生的体育测试情况,对全班学生的体育成绩进行了统计,并绘制出以下不完整的频数分布表和扇形统计图
分组
分数段(分)
频数
A
36≤x<41
2
B
41≤x<46
5
C
46≤x<51
15
D
51≤x<56
m
E
56≤x<61
10

(1)求全班学生人数和m的值;
(2)该班学生的体育成绩的中位数落在哪个分数段内?
(3)该班体育成绩满分(60分)共有3人,其中男生2人,女生1人,现从这3人中随机选取2人参加校运动会,求恰好选到一男一女生的概率 -
科目: 来源: 题型:
查看答案和解析>>【题目】(1)阅读理解:
如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.
解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.
中线AD的取值范围是 ;
(2)问题解决:
如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;
(3)问题拓展:
如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB是⊙O的弦,过B作BC⊥AB交⊙O于C,过C作⊙O的切线,交AB的延长线于点D,E为AD的中点,过E作EF//BC交DC的延长线于点F,连接AF并延长BC的延长线于点G

(1)求证:FC=FG;
(2)若BC=4,CG=6,求AB的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】下图是由几个相同的小正方体搭成的几何体,
(1)搭成这个几何体需要 个小正方体;
(2)画出这个几何体的主视图和左视图;


(3)在保持主视图和左视图不变的情况下,最多可以拿掉n个小正方体,则n= ,请在备用图中画出拿掉n个小正方体后新的几何体的俯视图.

-
科目: 来源: 题型:
查看答案和解析>>【题目】菱形ABCD中,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB、DC相交于点E、F,且∠EAF=60°

(1)如图1,当点E是CB上任意一点时(点E不与B、C重合),求证:BE=CF;
(2)如图2,当点E在CB的延长线上时,且∠EAB=15°,求点F到BC的距离.
相关试题