【题目】(2016山东省泰安市)某学校将为初一学生开设ABCDEF共6门选修课,现选取若干学生进行了“我最喜欢的一门选修课”调查,将调查结果绘制成如图统计图表(不完整)
![]()
根据图表提供的信息,下列结论错误的是( )
![]()
A. 这次被调查的学生人数为400人
B. 扇形统计图中E部分扇形的圆心角为72°
C. 被调查的学生中喜欢选修课E、F的人数分别为80,70
D. 喜欢选修课C的人数最少
参考答案:
【答案】D
【解析】
试题通过计算得出选项A、B、C正确,选项D错误,即可得出结论.
被调查的学生人数为60÷15%=400(人),∴选项A正确;
扇形统计图中D的圆心角为
×360°=90°,∵
×360°=36°,360°(17.5%+15%+12.5%)=162°,∴扇形统计图中E的圆心角=360°﹣162°﹣90°﹣36°=72°, ∴选项B正确;
∵400×
=80(人),400×17.5%=70(人),∴选项C正确;
∵12.5%>10%, ∴喜欢选修课A的人数最少,∴选项D错误;
-
科目: 来源: 题型:
查看答案和解析>>【题目】如果一元一次方程的解是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.
(1)在方程①x﹣(3x+1)=﹣5;②
+1=0;③3x﹣1=0 中,不等式组
的关联方程是 (填序号);(2)若不等式组
的某个关联方程 2x-m=1 的解是整数, 求 m 的值;(3)若方程
﹣
x=
x,3+x=2(x+
)都是关于 x 的不等式组
的关联方程,直接写出 m的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点O为Rt△ABC斜边AB上的一点,以OA为半径的⊙O与边BC交于点D,与边AC交于点E,连接AD,且AD平分∠BAC.
(1)试判断BC与⊙O的位置关系,并说明理由;
(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π).

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点A在直线l外,点B在直线l上.
(1)在l上求作一点C,在l外求作一点D,使得以A、B、C、D为顶点的四边形是菱形;(要求:用直尺和圆规作出所有大小不同的菱形)
(2)连接AB,若AB=5,且点A到直线l的距离为4,通过计算,找出(1)中面积最小的菱形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】若四边形的一条对角线把四边形分成两个等腰三角形,则这条对角线叫做这个四边形的“巧分线”,这个四边形叫“巧妙四边形”,若一个四边形有两条巧分线,则称为“绝妙四边形”.
(1)下列四边形一定是巧妙四边形的是 ;(填序号点①平行四边形;②矩形;③菱形;④正方形.
初步应用
(2)在绝妙四边形ABCD中,AC垂直平分BD,若∠BAD=80°,则∠BCD= ;
深入研究
(3)如图,在梯形ABCD中,AD∥BC,AB=AD=CD,∠B=72°.求证:梯形ABCD是绝妙四边形.
(4)在巧妙四边形ABCD中,AB=AD=CD,∠A=90°,AC是四边形ABCD的巧分线,请直接写出∠BCD的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知A、B、C、D是⊙O上的四点,
,AC是四边形ABCD的对角线(1)如图1,连结BD,若∠CDB=60°,求证:AC是∠DAB的平分线;
(2)如图2,过点D作DE⊥AC,垂足为E,若AC=7,AB=5,求线段AE的长度.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以每秒1cm的速度移动,同时点Q从点B出发沿BC边向点C以每秒2cm的速度移动P、Q两点在分别到达B、C两点后就停止移动,设两点移动的时间为t秒,回答下列问题:
(1)如图1,当t为几秒时,△PBQ的面积等于5cm2?
(2)如图2,当t=
秒时,试判断△DPQ的形状,并说明理由;(3)如图3,以Q为圆心,PQ为半径作⊙Q.
①在运动过程中,是否存在这样的t值,使⊙Q正好与四边形DPQC的一边(或边所在的直线)相切?若存在,求出t值;若不存在,请说明理由;
②若⊙Q与四边形DPQC有三个公共点,请直接写出t的取值范围。

相关试题