【题目】已知A、B、C、D是⊙O上的四点,
,AC是四边形ABCD的对角线
(1)如图1,连结BD,若∠CDB=60°,求证:AC是∠DAB的平分线;
(2)如图2,过点D作DE⊥AC,垂足为E,若AC=7,AB=5,求线段AE的长度.
![]()
参考答案:
【答案】(1)证明见解析;(2)1.
【解析】试题分析:(1)先根据
可知
再由
可得出
是等边三角形,故
由圆周角定理即可得出结论;
(2)首先连接
,在线段
上取点
,使得
连接
,易证得
继而可求得线段
的长度.
试题解析:(1)证明: ![]()
![]()
![]()
∴△BCD是等边三角形,
![]()
∴∠CAD=∠BAC,即AC是∠DAB的平分线;
![]()
(2)连接BD,在线段CE上取点F,使得EF=AE,连接DF,
∵DE⊥AC,
∴DF=DA,
∴∠DFE=∠DAE,
![]()
∴CD=BD,∠DAC=∠DCB,
∴∠DFE=∠DCB,
∵四边形ABCD是圆的内接四边形,
![]()
![]()
∴∠DFC=∠DAB,
∵在△CDF和△BDA中,
![]()
![]()
∴CF=AB=5,
∵AC=7,AB=5,
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点A在直线l外,点B在直线l上.
(1)在l上求作一点C,在l外求作一点D,使得以A、B、C、D为顶点的四边形是菱形;(要求:用直尺和圆规作出所有大小不同的菱形)
(2)连接AB,若AB=5,且点A到直线l的距离为4,通过计算,找出(1)中面积最小的菱形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(2016山东省泰安市)某学校将为初一学生开设ABCDEF共6门选修课,现选取若干学生进行了“我最喜欢的一门选修课”调查,将调查结果绘制成如图统计图表(不完整)

根据图表提供的信息,下列结论错误的是( )

A. 这次被调查的学生人数为400人
B. 扇形统计图中E部分扇形的圆心角为72°
C. 被调查的学生中喜欢选修课E、F的人数分别为80,70
D. 喜欢选修课C的人数最少
-
科目: 来源: 题型:
查看答案和解析>>【题目】若四边形的一条对角线把四边形分成两个等腰三角形,则这条对角线叫做这个四边形的“巧分线”,这个四边形叫“巧妙四边形”,若一个四边形有两条巧分线,则称为“绝妙四边形”.
(1)下列四边形一定是巧妙四边形的是 ;(填序号点①平行四边形;②矩形;③菱形;④正方形.
初步应用
(2)在绝妙四边形ABCD中,AC垂直平分BD,若∠BAD=80°,则∠BCD= ;
深入研究
(3)如图,在梯形ABCD中,AD∥BC,AB=AD=CD,∠B=72°.求证:梯形ABCD是绝妙四边形.
(4)在巧妙四边形ABCD中,AB=AD=CD,∠A=90°,AC是四边形ABCD的巧分线,请直接写出∠BCD的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以每秒1cm的速度移动,同时点Q从点B出发沿BC边向点C以每秒2cm的速度移动P、Q两点在分别到达B、C两点后就停止移动,设两点移动的时间为t秒,回答下列问题:
(1)如图1,当t为几秒时,△PBQ的面积等于5cm2?
(2)如图2,当t=
秒时,试判断△DPQ的形状,并说明理由;(3)如图3,以Q为圆心,PQ为半径作⊙Q.
①在运动过程中,是否存在这样的t值,使⊙Q正好与四边形DPQC的一边(或边所在的直线)相切?若存在,求出t值;若不存在,请说明理由;
②若⊙Q与四边形DPQC有三个公共点,请直接写出t的取值范围。

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知A(﹣4,﹣1),B(﹣5,﹣4),C(﹣1,﹣3),△ABC经过平移得到的△A′B′C′,△ABC中任意一点P(x1,y1)平移后的对应点为P′(x1+6,y1+4).
(1)请在图中作出△A′B′C′;
(2)写出点A′、B′、C′的坐标;
(3)求△ABC的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】
在平面直角坐标系中的位置如图所示.
(1)作出
关于
轴对称的
,并写出
各顶点的坐标;(2)将
向右平移6个单位,作出平移后的
并写出
各顶点的坐标;(3)观察
和
,它们是否关于某直线对称?若是,请用粗线条画出对称轴.
相关试题