【题目】如图,三角形 ABC 是由三角形 ABC 经过某种平移得到的,点 A 与点 A ,点 B与点B ,点C与点C分别对应,且这六个点都在格点上,观察各点以及各点坐标之间的关系,解答下列问题:
![]()
①分别写出点 B 和点B 的坐标,并说明三角形ABC 是由三角形 ABC 经过怎样的平移得到的;
②连接 BC ,直接写出 ∠ CBC 与∠ BCO 之间的数量关系 ;
③若点 M(a-1,2b﹣5)是三角形 ABC 内一点,它随三角形 ABC 按(1)中方式平移后得到的对应点为点 N(2a﹣7,4-b),求 a 和 b 的值.
参考答案:
【答案】①B(2,1),
(-1,-2)
三角形ABC 是由三角形 ABC先向左平移3个单位长度,再向下平移3个单位长度得到的(或先向下平移3个单位长度,再向左平移3个单位长度得到的);
②∠ CBC∠ BCO+![]()
③a=3,b=4
【解析】
①根据坐标与图形的性质确定对应点的坐标,找出对应点的横纵坐标之间的关系.
②根据平移的性质即可求解.
③根据对应点的横纵坐标之间的关系列出方程组,解方程组即可.
解:①B(2,1),
(-1,-2)
三角形ABC 是由三角形 ABC先向左平移3个单位长度,再向下平移3个单位长度得到的(或先向下平移3个单位长度,再向左平移3个单位长度得到的).
②∵三角形 ABC 是由三角形 ABC 经过某种平移得到的
∴∠ CBC∠ BCO+![]()
③由①中的平移变换得,
a-1-3=2a﹣7
a=3
2b﹣5-3=4-b
b=4
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知在四边形ABCD中,AD=BC且AC⊥BD,点E,F,G,H,P,Q分别是AB,BC,CD,DA,AC,BD的中点.
求证:(1)四边形EFGH是矩形;
(2)四边形EQGP是菱形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知 CD⊥AB,EF⊥AB,垂足分别为D,F,∠B+∠BDG=180°, 试说明∠BEF=∠CDG.将下面的解答过程补充完整,并填空(填写理由依据或数学式, 将答案按序号填在答题卷的对应位置内)

证明:∵CD⊥AB,EF⊥AB( ① )
∴∠BFE=∠BDC=90°( ② )
∴EF∥CD( ③ )
∴∠BEF= ④ ( ⑤ )
又∵∠B+∠BDG=180°( ⑥ )
∴BC∥DG( ⑦ )
∴∠CDG= ⑧ ( ⑨ )
∴∠CDG=∠BEF( ⑩ )
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校为了了解七年级学生课外活动情况,随机调查了该校若干名学生,调查他们喜欢各类课外活动的情况(课外活动分为四类:A﹣﹣喜欢打乒乓球的人,B﹣﹣喜欢踢足球的人,C﹣﹣喜欢打篮球的人,D﹣﹣喜欢其他的人),并将调查结果绘制成如下两幅不完整的统计图.

根据统计图信息完成下列问题:
(1)调查的学生人数为人.
(2)补全条形统计图和扇形统计图.
(3)若该校七年级共有600人,请估计七年级学生中喜欢打乒乓球的人数. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.
(1)求证:四边形ADEF是平行四边形;
(2)求证:∠DHF=∠DEF.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在矩形ABCD中,点E在边AD上,点F在边BC上,且AE=CF,作EG∥FH,分别与对角线BD交于点G、H,连接EH,FG.

(1)求证:△BFH≌△DEG;
(2)连接DF,若BF=DF,则四边形EGFH是什么特殊四边形?证明你的结论. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:直线 AB与直线 CD交于点 O,过点 O作 OE⊥AB.
①如图 1,OP 为∠AOD 内的一条射线,若∠1=∠2,求证:OP⊥CD;
②如图 2,若∠BOC=2∠AOC,求∠COE 的度数;
③如图 3.在(2)的条件下,过点 O 作 OF⊥CD,经过点 O 画直线 MN,若射线 OM平分∠BOD,请直接写出图中与 2∠EOF 度数相等的角.

相关试题