【题目】观察下列等式
12=1=
×1×2×(2+1)
12+22=
×2×3×(4+1)
12+22+32=
×3×4×(6+1)
12+22+32+42=
×4×5×(8+1)…
可以推测12+22+32+…+n2= .
参考答案:
【答案】
n(n+1)(2n+1)
【解析】解:∵第1个等式:12=1=
×1×2×(2×1+1);
第2个等式:12+22=
×2×3×(2×2+1);
第3个等式:12+22+32=
×3×4×(2×3+1)
第4个等式:12+22+32+42=
×4×5×(2×4+1)
…
∴第n个等式:12+22+32+…+n2=
n(n+1)(2n+1),
所以答案是:
n(n+1)(2n+1).
【考点精析】通过灵活运用数与式的规律,掌握先从图形上寻找规律,然后验证规律,应用规律,即数形结合寻找规律即可以解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=1,点A在函数y=﹣
(x<0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y=
(x>0)的图象上,C1O1与此图象交于点P,则点P的纵坐标是( )
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数y=ax2+bx+c的图象如图所示,记m=|a﹣b+c|+|2a+b+c|,n=|a+b+c|+|2a﹣b﹣c|.则下列选项正确的是( )

A.m<n
B.m>n
C.m=n
D.m、n的大小关系不能确定 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形ABCD中,AB=8,BC=4,点E在边AB上,点F在边CD上,点G、H在对角线AC上,若四边形EGFH是菱形,则AE的长是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】感知:如图①,点E在正方形ABCD的边BC上,BF⊥AE于点F,DG⊥AE于点G,可知△ADG≌△BAF.(不要求证明)
拓展:如图②,点B、C分别在∠MAN的边AM、AN上,点E、F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC,求证:△ABE≌△CAF.
应用:如图③,在等腰三角形ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为9,则△ABE与△CDF的面积之和为________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校为了选拔学生参加“汉字听写大赛”,对九年级一班、二班各10名学生进行汉字听写测试.计分采用10分制(得分均取整数),成绩达到6分或6分以上为及格,得到9分为优秀,成绩如表1所示,并制作了成绩分析表(表2).
表1一班
5
8
8
9
8
10
10
8
5
5
二班
10
6
6
9
10
4
5
7
10
8
表2
班级
平均数
中位数
众数
方差
及格率
优秀率
一班
7.6
8
a
3.82
70%
30%
二班
b
7.5
10
4.94
80%
40%
(1)在表2中,a= , b=;
(2)有人说二班的及格率、优秀率均高于一班,所以二班比一班好;但也有人认为一班成绩比二班好,请你给出坚持一班成绩好的两条理由;
(3)一班、二班获满分的中同学性别分别是1男1女、2男1女,现从这两班获满分的同学中各抽1名同学参加“汉字听写大赛”,用树状图或列表法求出恰好抽到1男1女两位同学的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:二次函数y=x2﹣3(m﹣1)x+3m﹣4(m为实数)的图象与x轴交于A(x1 , 0)、B(x2 , 0)(x1≠x2)两点.
(1)求m的取值范围;
(2)若
(O为坐标原点),求m的值.
相关试题