【题目】如图,在△ABC中,AB=AC,点E在边BC上移动(点E不与点B,C重合),满足∠DEF=∠B,且点D、F分别在边AB、AC上.
(1)求证:△BDE∽△CEF;
(2)当点E移动到BC的中点时,求证:FE平分∠DFC.


参考答案:

【答案】
(1)解:∵AB=AC,

∴∠B=∠C,

∵∠BDE=180°﹣∠B﹣∠DEB,

∠CEF=180°﹣∠DEF﹣∠DEB,

∵∠DEF=∠B,

∴∠BDE=∠CEF,

∴△BDE∽△CEF


(2)解:∵△BDE∽△CEF,

∵点E是BC的中点,

∴BE=CE,

∵∠DEF=∠B=∠C,

∴△DEF∽△CEF,

∴∠DFE=∠CFE,

∴FE平分∠DFC.


【解析】(1)根据等腰三角形的性质得到∠B=∠C,根据三角形的内角和和平角的定义得到∠BDE=∠CEF,于是得到结论;(2)根据相似三角形的性质得到 ,等量代换得到 ,根据相似三角形的性质即可得到结论.

关闭