【题目】阅读下面材料:
小明在数学课外小组活动时遇到这样一个问题:
![]()
如果一个不等式中含有绝对值,并且绝对值符号中含有未知数,我们把这个不等式叫做绝对值不等式,求绝对值不等式|x|>3的解集.
小明同学的思路如下:
先根据绝对值的定义,求出|x|恰好是3时x的值,并在数轴上表示为点A,B,如图所示.观察数轴发现,以点A,B为分界点把数轴分为三部分:
点A左边的点表示的数的绝对值大于3;
点A,B之间的点表示的数的绝对值小于3;
点B右边的点表示的数的绝对值大于3.
因此,小明得出结论绝对值不等式|x|>3的解集为:x<-3或x>3.
参照小明的思路,解决下列问题:
(1)请你直接写出下列绝对值不等式的解集.
①|x|>1的解集是 .
②|x|<2.5的解集是 .
(2)求绝对值不等式2|x-3|+5>13的解集.
(3)直接写出不等式x2>4的解集是 .
参考答案:
【答案】(1)①x>1或x<-1;②-2.5<x<2.5;(2)x>7或x<-1;(3)x>2或x<-2.
【解析】
(1)先根据绝对值的定义,当|x|=1时,x=1或-1.再根据题意即可得;
(2)将2|x-3|+5>13化为|x-3|>4后,求出当|x-3|=4时,x=7或-1根据以上结论即可得;
(3)将x2>4化为|x|>2,再根据题意即可得.
解:(1)①根据绝对值的定义,当|x|=1时,x=1或-1,分界点把数轴分为三部分:
点-1左边的点表示的数的绝对值大于1;
点-1,1之间的点表示的数的绝对值小于1;
点1右边的点表示的数的绝对值大于1.
因此,绝对值不等式|x|>1的解集是 x>1或x<-1.
②根据绝对值的定义,当|x|=2.5时,x=2.5或-2.5,分界点把数轴分为三部分:
点-2.5左边的点表示的数的绝对值大于2.5;
点-2.5,2.5之间的点表示的数的绝对值小于2.5;
点2.5右边的点表示的数的绝对值大于2.5.
因此,绝对值不等式|x|<2.5的解集是-2.5<x<2.5.
故答案是:①x>1或x<-1;②-2.5<x<2.5;
(2)2|x-3|+5>13
∴2|x-3|>8
∴|x-3|>4
根据绝对值的定义,当|x-3|=4时,x=7或-1,分界点把数轴分为三部分:
点-1左边的点表示的数与3的差的绝对值大于4;
点-1,7之间的点表示的数与3的差的绝对值小于4;
点7右边的点表示的数与3的差的绝对值大于4
∴|x-3|>4的解集为x>7或x<-1;
∴2|x-3|+5>13的解集为x>7或x<-1;
(3)∵x2>4
∴|x|>2
根据绝对值的定义,当|x|=2时,x=2或-2,分界点把数轴分为三部分:
点-2左边的点表示的数的绝对值大于2;
点-2,2之间的点表示的数的绝对值小于2;
点2右边的点表示的数的绝对值大于2.
因此,绝对值不等式|x|>2的解集是 x>2或x<-2.
∴不等式x2>4的解集是 x>2或x<-2.
故答案是:x>2或x<-2.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校为迎接体育中考,了解学生的体育情况,学校随机调查了本校九年级50名学生“30秒跳绳”的次数,并将调查所得的数据整理如下:

根据以上图表信息,解答下列问题:
(1)表中的a= ,m= ;
(2)请把频数分布直方图补充完整;(画图后请标注相应的数据)
(3)若该校九年级共有600名学生,请你估计“30秒跳绳”的次数60次以上(含60次)的学生有多少人?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一次函数
的图象与反比例函数
的图象相交于
、
两点,其中点
的坐标为
,点
的坐标为
.
(1)根据图象,直接写出满足
的
的取值范围;(2)求这两个函数的表达式;
(3)点
在线段
上,且
,求点
的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正确结论的个数是( )

A. 4个 B. 3个 C. 2个 D. 1个
-
科目: 来源: 题型:
查看答案和解析>>【题目】某气象研究中心观测到一场沙尘暴从发生到减弱的过程,开始一段时间风速平均每小时增加2千米,4小时后,沙尘暴经过开阔荒漠地,风速变为平均每小时增加4千米,然后风速不变,当沙尘暴遇到绿色植被区时,风速y(千米/小时),时间x(小时)成反比例关系地慢慢减弱,结合风速与时间的图象,回答下列问题:

(1)这场沙尘暴的最高风速是多少?最高风速维持了多长时间;
(2)求出当x≥20时,风速y(千米/小时)与时间x(小时)之间的函数关系?
(3)在这次沙尘暴的形成过程中,当风速不超过10千米/小时称为“安全时刻”,其余时刻是“危险时刻”.问这次风暴的整个过程中,“危险时刻”一共有多长时间?
-
科目: 来源: 题型:
查看答案和解析>>【题目】为应对越来越复杂的交通状况,某城市对其道路进行拓宽改造,工程队在工作了一段时间后,因雨被迫停工几天,随后工程队加快了施工进度,按时完成了拓宽改造任务.下面能反映该工程尚未改造的道路
(米)与时间
(天)的关系的大致图象是( )A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】对称轴与 y轴平行且经过原点O的抛物线也经过A(2,m),B(4,m),若△AOB的面积为4,则抛物线的解析式为________.
相关试题