【题目】目前“微信”、“支付宝”、“共享单车”和“网购”给我们带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行了调查,随机调查了
人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.
![]()
(1)根据图中信息求出
=___________,
=_____________;
(2)请你帮助他们将这两个统计图补全;
(3)根据抽样调查的结果,请估算全校2000名学生种,大约有多少人最认可“微信”这一新生事物?
参考答案:
【答案】(1)100,35;(2)详见解析;(3)800人.
【解析】
(1)由共享单车的人数以及其所占百分比可求得总人数m,用支付宝人数除以总人数可得其百分比n的值;
(2)总人数乘以网购的百分比可求得网购人数,用微信人数除以总人数求得其百分比,由此即可补全两个图形;
(3)总人数乘以样本中微信人数所占百分比即可求得答案.
(1)抽查的总人数m=10÷10%=100,
支付宝的人数所占百分比n%=
=35%,所以n=35,
故答案为:100,35;
(2)网购人数为:100×15%=15人,
微信对应的百分比为:
,
补全图形如图所示:
![]()
(3)估算全校2000名学生种,最认可“微信”这一新生事物的人数为:2000×40%=800人.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d=
计算.例如:求点P(﹣1,2)到直线y=3x+7的距离.
解:∵直线y=3x+7,其中k=3,b=7.
∴点P(﹣1,2)到直线y=3x+7的距离为:
d=
=
=
=
.根据以上材料,解答下列问题:
(1)求点P(﹣1,3)到直线y=x﹣3的距离;
(2)已知⊙Q的圆心Q坐标为(0,3),半径r为3,判断⊙Q与直线y=
x+9的位置关系并说明理由;(3)已知直线y=3x+3与y=3x﹣6平行,求这两条直线之间的距离.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某商场准备进一批两种不同型号的衣服,已知购进A种型号衣服9件,B种型号衣服10件,则共需1810元;若购进A种型号衣服12件,B种型号衣服8件,共需1880元;已知销售一件A型号衣服可获利18元,销售一件B型号衣服可获利30元,要使在这次销售中获利不少于699元,且A型号衣服不多于28件.
(1)求A、B型号衣服进价各是多少元?
(2)若已知购进A型号衣服是B型号衣服的2倍还多4件,则商店在这次进货中可有几种方案并简述购货方案.
【答案】(1)A种型号的衣服每件90元,B种型号的衣服100元;(2)有三种进货方案,具体见解析.
【解析】试题分析:(1)等量关系为:A种型号衣服9件×进价+B种型号衣服10件×进价=1810,A种型号衣服12件×进价+B种型号衣服8件×进价=1880;
(2)关键描述语是:获利不少于699元,且A型号衣服不多于28件.关系式为:18×A型件数+30×B型件数≥699,A型号衣服件数≤28.
试题解析:(1)设A种型号的衣服每件x元,B种型号的衣服y元,
则:
,解之得
.答:A种型号的衣服每件90元,B种型号的衣服100元;
(2)设B型号衣服购进m件,则A型号衣服购进(2m+4)件,
可得:
,解之得192m12,
∵m为正整数,
∴m=10、11、12,2m+4=24、26、28.
答:有三种进货方案:
(1)B型号衣服购买10件,A型号衣服购进24件;
(2)B型号衣服购买11件,A型号衣服购进26件;
(3)B型号衣服购买12件,A型号衣服购进28件。
点睛:点睛:本题主要考查二元一次方程组和一元一次不等式组的实际问题的应用,解题的关键是读懂题目的意思,根据题目给出的条件,设出未知数,分别找出甲组和乙组对应的工作时间,找出合适的等量关系,列出方程组,再求解.
【题型】解答题
【结束】
21【题目】如图,锐角△ABC内接于⊙O,若⊙O的半径为6,sinA=
,求BC的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,C是AB上一点,点D,E分别在AB两侧,AD∥BE,且AD=BC,BE=AC.

(1)求证:CD=CE;
(2)连接DE,交AB于点F,猜想△BEF的形状,并给予证明.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,CD为⊙O的直径,点B在⊙O上,连接BC、BD,过点B的切线AE与CD的延长线交于点A,OE∥BD,交BC于点F,交AB于点E.
(1)求证:∠E=∠C;
(2)若⊙O的半径为3,AD=2,试求AE的长;
(3)求△ABC的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,锐角△ABC内接于⊙O,若⊙O的半径为6,sinA=
,求BC的长.
【答案】BC=8.
【解析】试题分析:通过作辅助线构成直角三角形,再利用三角函数知识进行求解.
试题解析:作⊙O的直径CD,连接BD,则CD=2×6=12.
∵
∴
∴

点睛:直径所对的圆周角是直角.
【题型】解答题
【结束】
22【题目】如图,一次函数y=k1x+b与反比例函数y=
的图象交于A(2,m),B(n,﹣2)两点.过点B作BC⊥x轴,垂足为C,且S△ABC=5.(1)求一次函数与反比例函数的解析式;
(2)根据所给条件,请直接写出不等式k1x+b>
的解集;(3)若P(p,y1),Q(﹣2,y2)是函数y=
图象上的两点,且y1≥y2,求实数p的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某超市在“十一”长假期间对顾客实行优惠,规定如下:
一次性购物金额
优惠办法
不超过100元
不予优惠
超过100元但不超过500元
超过100元部分给予九折优惠
超过500元
超过500元部分给予八折优惠
(1)小明的爷爷一次性购200元的保健食品,他实际付款_____元;小明妈妈一次性购300元的衣服,她实际付款_____元;如果他们两人合作付款,则能少付_____元;
(2)小芳奶奶在该超市一次性购物x元生活用品,当x大于或等于500时,她实际付款_____元;(用含x的式子表示,写最简结果)
(3)如果小芳奶奶两次购物货款合计900元,第一次购物的货款为a元(
),两次购物小芳奶奶实际付款多少元?(用含a的式子表示)
相关试题