【题目】如图,在平行四边形ABCD中,∠B=60°,将△ABC沿对角线AC折叠,点B的对应点落在点E处,且点B,A,E在一条直线上,CE交AD于点F,则图中等边三角形共有( )
![]()
A. 4个 B. 3个 C. 2个 D. 1个
参考答案:
【答案】B
【解析】根据折叠的性质可得∠E=∠B=60°,进而可证明△BEC是等边三角形,再根据平行四边形的性质可得:AD∥BC,所以可得∠EAF=60°,进而可证明△EFA是等边三角形,由等边三角形的性质可得∠EFA=∠DFC=60°,又因为∠D=∠B=60°,进而可证明△DFC是等边三角形,问题得解.
∵将△ABC沿对角线AC折叠,点B的对应点落在点E处,
∴∠E=∠B=60°,
∴△BEC是等边三角形,
∵四边形ABCD是平行四边形,
∴AD∥BC,∠D=∠B=60°,
∴∠B=∠EAF=60°,
∴△EFA是等边三角形,
∵∠EFA=∠DFC=60°,∠D=∠B=60°,
∴△DFC是等边三角形,
∴图中等边三角形共有3个,
故选B.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某文具店,甲种笔记本标价每本8元,乙种笔记本标价每本5元
(1)两种笔记本各销售了多少?
(2)所得销售款可能是660元吗?为什么?

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知△ABC的面积是60,请完成下列问题:
(1)如图①,若AD是△ABC的BC边上的中线,则△ABD的面积 _△ACD的面积(选填“>”“<”或“=”).
(2)如图②,若CD,BE分别是△ABC的AB,AC边上的中线,求四边形ADOE的面积可以用如下方法:连接AO,由AD=DB得:S△ADO=S△BDO,同理:S△CEO=S△AEO,设S△ADO=x,S△CEO=y,则S△BDO=x,S△AEO=y,由题意得:S△ABE=
S△ABC=30,S△ADC=
S△ABC=30,可列方程组为: ,通过解这个方程组可得四边形ADOE的面积为 .(3)如图③,AD∶DB=1∶3,CE∶AE=1∶2,请你计算四边形ADOE的面积,并说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB是⊙O的直径,弦CD⊥AB于点G.点F是CD上一点,且满足
=
,连接AF并延长交⊙0于点E.连接AD,DE,若CF=2,AF=3.给出下列结论:
①△ADF∽△AED;②FG=2;③tan∠E=
;④S△DEF=4
.
其中正确的是( )
A.①②④
B.①②③
C.②③④
D.①③④ -
科目: 来源: 题型:
查看答案和解析>>【题目】小敏为了解本市的空气质量情况,从市环保局随机抽取了若干天的空气质量情况作为标本进行统计,绘制成如图所示的条形统计图和扇形统计图(部分信息为给出)

请你根据图中提供的信息,解答下列问题:
(1)本次调查中共抽取了多少天的空气质量情况作为标本?
(2)求轻微污染天数并补全条形统计图;
(3)请你估计该市这一年(365天)空气质量达到“优”和“良”的总天数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,⊙P与y轴相切,交直线y=x于A,B两点,已知圆心P的坐标为(2,a)(a>2),AB=2
,则a的值为( ) 
A.4
B.2+
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将一段12cm长的管道竖直置于地面,并在上面放置一个半径为5cm的小球,放置完毕以后小球顶端距离地面20cm,则该管道的直径AB为 .

相关试题