【题目】如图,一次函数y=k1x+b与反比例函数y=
的图象交于A(2,m),B(-3,﹣2)两点.![]()
(1)求m的值;
(2)根据所给条件,请直接写出不等式k1x+b>
的解集;
(3)若P(p,y1),Q(﹣2,y2)是函数y=
图象上的两点, 且y1>y2 , 求实数p的取值范围.
参考答案:
【答案】
(1)解:把B(-3,﹣2)代入y=
得:k2=6,即反比例函数的解析式是y=
;
又点A(2,m)在反比例函数y=
图象上,
∴m=3
(2)解:∵A(2,3),B(﹣3,﹣2),
∴不等式k1x+b>
的解集是﹣3<x<0或x>2
(3)解:分为两种情况:当点P在第三象限时,要使y1>y2,实数p的取值范围是p<﹣2,
当点P在第一象限时,要使y1>y2,实数p的取值范围是p>0
【解析】(1)先把B点坐标代入到反比例函数解析式,求出k2,,再把A点坐标代入到反比例函数解析式中,可求出m;(2)结合图像,先找交点对应的x值,再找直线在双曲线上方对应的x范围,注意不能取0;(3)可分类讨论,当两点在同一象限内或不在同一象限内.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中:①∠ABC=∠ADC;②AC与BD相互平分;③AC,BD分别平分四边形ABCD的两组对角;④四边形ABCD的面积S=
ACBD.(1)写出正确结论的序号;
(2)证明所有正确的结论.

-
科目: 来源: 题型:
查看答案和解析>>【题目】我校的北大门是由相同菱形框架组成的伸缩电动推拉门,如图是大门关闭时的示意图,此时 菱形的边长为0.5m,锐角都是50°.求大门的宽(结果精确到0.01,参考数据:sin25°≈0.422 6,cos25°≈0.906 3).

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB为⊙O的直径,直线CD切⊙O于点D,AM⊥CD于点M,连接AD,BD.

(1)求证:∠ADC=∠ABD;
(2)若AD=2
,⊙O的半径为3,求MD的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示
(1)甲的速度为______千米/分,乙的速度为______千米/分
(2)当乙到达终点A后,甲还需______分钟到达终点B
(3)请通过计算回答:当甲、乙之间的距离为10千米时,甲出发了多少分钟?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,⊙O的直径AB为4,C为⊙O上一个定点,∠ABC=30°,动点P从A点出发沿半圆弧
向B点运动(点P与点C在直径AB的异侧),当P点到达B点时运动停止,在运动过程中,过点C作CP的垂线CD交PB的延长线于D点.
(1)求证:△ABC∽△PDC
(2)如图2,当点P到达B点时,求CD的长;
(3)设CD的长为
.在点P的运动过程中,
的取值范围为(请直接写出案). -
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,AB=AC,点D是射线CB上的一动点(不与点B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.
(1)如图1,当点D在线段CB上,且∠BAC=90°时,那么∠DCE= 度;
(2)设∠BAC=
,∠DCE=
.① 如图2,当点D在线段CB上,∠BAC≠90°时,请你探究
与
之间的数量关系,并证明你的结论;② 如图3,当点D在线段CB的延长线上,∠BAC≠90°时,请将图3补充完整,并直接写出此时
与
之间的数量关系(不需证明).
相关试题