【题目】在平面直角坐标系中,点A(0,6),B(8,0),AB=10,如图作∠DBO=∠ABO,∠CAy=∠BAO,BD交y轴于点E,直线DO交AC于点C.
(1)①求证:△ACO≌△EDO;②求出线段AC、BD的位置关系和数量关系;
(2)动点P从A出发,沿A﹣O﹣B路线运动,速度为1,到B点处停止运动;动点Q从B出发,沿B﹣O﹣A运动,速度为2,到A点处停止运动.二者同时开始运动,都要到达相应的终点才能停止.在某时刻,作PE⊥CD于点E,QF⊥CD于点F.问两动点运动多长时间时△OPE与△OQF全等?
![]()
参考答案:
【答案】(1)AC∥BD,AC=BD﹣10;(2)当两动点运动时间为2、
、12秒时,△OPE与△OQF全等.
【解析】
(1)①根据全等三角形的判定定理ASA证得结论;
②利用①中全等三角形的性质得到:AC∥BD,AC=BD-10;
(2)设运动的时间为t秒,(i)当点P、Q分别在y轴、x轴上时(ii)当点P、Q都在y轴上时,(iii)当点P在x轴上,Q在y轴时若二者都没有提前停止,当点Q提前停止时,列方程即可得到结论.
(1)①如图,
![]()
∵∠DBO=∠ABO,OB⊥AE,
∴∠BAO=∠BEO,
∴AB=BE,
∴AO=OE,
∵∠CAy=∠BAO,
∴∠CAy=∠BEO,
∴∠DEO=∠CAO
在△ACO与△EDO中,
,
∴△ACO≌△EDO(ASA);
②由①知,△ACO≌△EDO,
∴∠C=∠D,AC=DE,
∴AC∥BD,AC=BD﹣10;
(2)设运动的时间为t秒,
(i)当点P、Q分别在y轴、x轴上时PO=QO得:6﹣t=8﹣2t,解得t=2(秒),
(ii)当点P、Q都在y轴上时PO=QO得:6﹣t=2t﹣8,解得t=
(秒),
(iii)当点P在x轴上,Q在y轴时若二者都没有提前停止,则PO=QO得:t﹣6=2t﹣8,解得t=2(秒)不合题意;
当点Q提前停止时,有t﹣6=6,解得t=12(秒),
综上所述:当两动点运动时间为2、
、12秒时,△OPE与△OQF全等.
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下列材料:
在学习“分式方程及其解法”过程中,老师提出一个问题:若关于x的分式方程
的解为正数,求a的取值范围?经过小组交流讨论后,同学们逐渐形成了两种意见:
小明说:解这个关于x的分式方程,得到方程的解为x=a﹣2.由题意可得a﹣2>0,所以a>2,问题解决.
小强说:你考虑的不全面.还必须保证a≠3才行.
老师说:小强所说完全正确.
请回答:小明考虑问题不全面,主要体现在哪里?请你简要说明: .
完成下列问题:
(1)已知关于x的方程
=1的解为负数,求m的取值范围;(2)若关于x的分式方程
=﹣1无解.直接写出n的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是( )

A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,反比例函数y=
的图象经过二次函数y=ax2+bx图象的顶点(﹣
,m)(m>0),则有( ) 
A.a=b+2k
B.a=b﹣2k
C.k<b<0
D.a<k<0 -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为_____秒时,△ABP和△DCE全等.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=AC,AB的垂直平分线分别交AB,AC于点D,E.
(1)若∠A=40°,求∠EBC的度数;
(2)若AD=5,△EBC的周长为16,求△ABC的周长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】探究题:如图,在等腰三角形ABC中,AB=AC,其底边长为8 cm,腰长为5 cm,一动点P在底边上从点B出发向点C以0.25 cm/s的速度移动,请你探究:当点P运动多长时间时,点P与顶点A的连线PA与腰垂直.

相关试题