【题目】如图,一次函数y=kx+b的图象与反比例函数
(x>0)的图象交于A(2,﹣1),B(
,n)两点,直线y=2与y轴交于点C.
![]()
(1)求一次函数与反比例函数的解析式;
(2)求△ABC的面积.
参考答案:
【答案】(1)y=2x﹣5,
;(2)
.
【解析】
试题分析:(1)把A坐标代入反比例解析式求出m的值,确定出反比例解析式,再将B坐标代入求出n的值,确定出B坐标,将A与B坐标代入一次函数解析式求出k与b的值,即可确定出一次函数解析式;
(2)利用两点间的距离公式求出AB的长,利用点到直线的距离公式求出点C到直线AB的距离,即可确定出三角形ABC面积.
试题解析:(1)把A(2,﹣1)代入反比例解析式得:﹣1=
,即m=﹣2,∴反比例解析式为
,把B(
,n)代入反比例解析式得:n=﹣4,即B(
,﹣4),把A与B坐标代入y=kx+b中得:
,解得:k=2,b=﹣5,则一次函数解析式为y=2x﹣5;
(2)∵A(2,﹣1),B(
,﹣4),直线AB解析式为y=2x﹣5,∴AB=
=
,原点(0,0)到直线y=2x﹣5的距离d=
=
,则S△ABC=
ABd=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某探测队在地面A、B两处均探测出建筑物下方C处有生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置C的深度.(结果精确到1米.参考数据:sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,
≈1.7)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,数轴上点A对应的有理数为20,点P以每秒2个单位长度的速度从点A出发,点Q以每秒4个单位长度的速度从原点O出发,且P,Q两点同时向数轴正方向运动,设运动时间为t秒.

(1)当t=2时,P,Q两点对应的有理数分别是 , , PQ=;
(2)当PQ=10时,求t的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平行四边形ABCD中,AC与BD相交于点O,AB⊥AC,∠DAC=45°,AC=2,则BD的长为( )

A.6
B.2
C.
D.3 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D , 交AB于点E , 且BE=BF , 添加一个条件,仍不能证明四边形BECF为正方形的是( ).

A.BC=AC
B.CF⊥BF
C.BD=DF
D.AC=BF -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点A是双曲线y=
在第一象限上的一动点,连接AO并延长交另一分支于点B,以AB为斜边作等腰Rt△ABC,点C在第二象限,随着点A的运动,点C的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为( ) 
A.y=
B.y=
C.y=﹣
D.y=﹣
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒,连接DE,当△BDE是直角三角形时,t的值______________.

相关试题