【题目】如图,P1、P2是反比例函数y=
(k>0)在第一象限图象上的两点,点A1的坐标为(4,0).若△P1OA1与△P2A1A2均为等腰直角三角形,其中点P1、P2为直角顶点. ![]()
(1)求反比例函数的解析式.
(2)①求P2的坐标. ②根据图象直接写出在第一象限内当x满足什么条件时,经过点P1、P2的一次函数的函数值大于反比例函数y=
的函数值.
参考答案:
【答案】
(1)解:过点P1作P1B⊥x轴,垂足为B
∵点A1的坐标为(4,0),△P1OA1为等腰直角三角形
∴OB=2,P1B=
OA1=2
∴P1的坐标为(2,2)
将P1的坐标代入反比例函数y=
(k>0),得k=2×2=4
∴反比例函数的解析式为 ![]()
(2)①过点P2作P2C⊥x轴,垂足为C
∵△P2A1A2为等腰直角三角形
∴P2C=A1C
设P2C=A1C=a,则P2的坐标为(4+a,a)
将P2的坐标代入反比例函数的解析式为
,得
a=
,解得a1=
,a2=
(舍去)
∴P2的坐标为(
,
)
②在第一象限内,当2<x<2+
时,一次函数的函数值大于反比例函数的值.
![]()
【解析】(1)先根据点A1的坐标为(4,0),△P1OA1为等腰直角三角形,求得P1的坐标,再代入反比例函数求解;(2)先根据△P2A1A2为等腰直角三角形,将P2的坐标设为(4+a,a),并代入反比例函数求得a的值,得到P2的坐标;再根据P1的横坐标和P2的横坐标,判断x的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,小东在教学楼距地面9米高的窗口C处,测得正前方旗杆顶部A点的仰角为37°,旗杆底部B点的俯角为45°,升旗时,国旗上端悬挂在距地面2.25米处,若国旗随国歌声冉冉升起,并在国歌播放45秒结束时到达旗杆顶端,则国旗应以多少米/秒的速度匀速上升?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM.
(1)若∠BOD=70°,求∠AOM和∠CON的度数;
(2)若∠BON=50°,求∠AOM和∠CON的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】为了了解某学校初四年级学生每周平均课外阅读时间的情况,随机抽查了该学校初四年级m名同学,对其每周平均课外阅读时间进行统计,绘制了如下条形统计图(图一)和扇形统计图(图二):

(1)根据以上信息回答下列问题:
①求m值.
②求扇形统计图中阅读时间为5小时的扇形圆心角的度数.
③补全条形统计图.
(2)直接写出这组数据的众数、中位数,求出这组数据的平均数. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠ABD和∠BDC的平分线交于点E,BE的延长线交CD于点F,且∠1+∠2=90°.猜想∠2与∠3的关系并证明.

-
科目: 来源: 题型:
查看答案和解析>>【题目】二次函数y=ax+bx+c的图像如图所示,则代数式(a+b)-c的值( ).

A.大于0
B.等于0
C.小于0
D.不确定 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,P为正方形ABCD的边BC上一动点(P与B、C不重合),点Q在CD边上,且BP=CQ,连接AP、BQ交于点E,将△BQC沿BQ所在直线对折得到△BQN,延长QN交BA的延长线于点M.

(1)求证:AP⊥BQ;
(2)若AB=3,BP=2PC,求QM的长;
(3)当BP=m,PC=n时,求AM的长.
相关试题