【题目】已知:如图,AB是⊙O的直径,弦CD⊥AB于E,∠ACD=30°,AE=2cm.求DB长.
![]()
参考答案:
【答案】DB=
cm
【解析】试题分析:由AB是⊙O的直径,弦CD⊥AB,根据垂径定理,可得CE=DE,∠AEC=∠DEB=90°,然后由含30°角的直角三角形的性质,即可求得EC与DE的长,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠B=30°,继而求得DB的长.
试题解析:∵AB是⊙O的直径,弦CD⊥AB,
∴CE=DE,∠AEC=∠DEB=90°,
∵∠B=∠ACD=30°,
在Rt△ACE中,AC=2AE=4cm,
∴CE=
=2
(cm),
∴DE=2
cm,
在Rt△BDE中,∠B=30°,
∴BD=2DE=4
cm.
∴DB的长为4
cm.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在一块矩形ABCD的空地上划一块四边形MNPQ进行绿化,如图,四边形的顶点在矩形的边上,且AN=AM=CP=CQ=x m,已知矩形的边BC=200 m,边AB=a m,a为大于200的常数,设四边形MNPQ的面积为S m2
(1) 求S关于x的函数关系式,并直接写出自变量x的取值范围
(2) 若a=400,求S的最大值,并求出此时x的值
(3) 若a=800,请直接写出S的最大值

-
科目: 来源: 题型:
查看答案和解析>>【题目】观察下列等式:
①32﹣12=8×1
②52﹣32=8×2
③72﹣52=8×3
④92﹣72=8×4
(1)请你紧接着写出两个等式:
⑤;
⑥;
(2)利用这个规律计算:20152﹣20132的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】为了解全校学生的上学方式,在全校1000名学生中随机抽取了150名学生进行调查.下列说法正确的是( )
A. 总体是全校学生B. 样本容量是1000
C. 个体是每名学生D. 样本是随机抽取的150名学生的上学方式
-
科目: 来源: 题型:
查看答案和解析>>【题目】判断题,对的画“√”错的画“×”
(1)对角线互相垂直的四边形是菱形(______)
(2)一条对角线垂直另一条对角线的四边形是菱形(_____)
(3)对角线互相垂直且平分的四边形是菱形(_____)
(4)对角线相等的四边形是菱形(_____)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知:AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D.E是AB延长线上一点,CE交⊙O于点F,连结OC,AC.

(1)求证:AC平分∠DAO;
(2)若∠DAO=105°,∠E=30°.①求∠OCE的度数.②若⊙O的半径为
,求线段EF的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AC是⊙O的直径,点B在⊙O上,∠ACB=30°.

(1)利用尺规作∠ABC的平分线BD,交AC于点E,交⊙O于点D,连接CD(保留作图痕迹,不写作法)
(2)在(1)所作的图形中,求AB与CD的比值.
相关试题