【题目】如图,在平面直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边三角形△AOB,点C为x正半轴上一动点(OC>1),连接BC,以线段BC为边在第四象限内作等边三角形△CBD,连接DA并延长,交y轴于点E.
(1)求证:△OBC≌△ABD
(2)在点C的运动过程中,∠CAD的度数是否会变化?如果不变,请求出∠CAD的度数;如果变化,请说明理由.
(3)当点C运动到什么位置时,以A,E,C为顶点的三角形是等腰三角形?
![]()
参考答案:
【答案】(1)证明见解析;(2)在点C的运动过程中,∠CAD的度数不会变化,理由见解析;(3) 当点C运动到(3,0)时,以A,E,C为顶点的三角形是等腰三角形.
【解析】
(1)先根据等边三角形的性质得∠OBA=∠CBD=60°,OB=BA,BC=BD,则∠OBC=∠ABD,然后可根据“SAS”可判定△OBC≌△ABD;
(2)根据等边三角形的性质即可得出;
(3)先根据全等三角形的性质以及等边三角形的性质,求得∠EAC=120°,进而得出以A,E,C为顶点的三角形是等腰三角形时,AE和AC是腰,最后根据Rt△AOE中,OA=1,∠OEA=30°,求得AC=AE=2,据此得到OC=1+2=3,即可得出点C的位置.
(1)证明:∵△AOB、△CBD都是等边三角形
∴ BO=BA,BC=BD, ∠OBA=∠CBD=600
∴ ∠OBA+∠ABC = ∠CBD+∠ABC
∴ ∠OBC = ∠ABD
∴ △OBC≌△ABD
(2)解:在点C的运动过程中,∠CAD的度数不会变化,理由如下:
∵ △AOB是等边三角形
∴ ∠BOA =∠OAB= 60°
∵ △OBC≌△ABD
∴ ∠BAD =∠BOC= 60°
∴ ∠CAD=1800-∠0AB-∠BAD= 60°
(3)解:∵ A(1,0)
∴ OA=1
∵ ∠EOA= 900,∠EAO=∠CAD= 60°
∴ ∠OEA= 30°
∴ AE=2OA=2
∵ ∠EAC=180°-∠EAO=120°
∴ 当以A,E,C为顶点的三角形是等腰三角形时,AE、AC是腰
∴ AE=AC=2
∴ OC=OA+AC=3
∴ 当点C运动到(3,0)时,以A,E,C为顶点的三角形是等腰三角形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=AC,点D在AB边上,点D到点A的距离与点D到点C的距离相等.
(1)利用尺规作图作出点D,不写作法但保留作图痕迹.
(2)若△ABC的底边长5,周长为21,求△BCD的周长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价7元售出150本时,出现滞销,便以定价的5折售完剩余的书.
(1)每本书第一次的批发价是多少钱?
(2)试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,则
的值是( )
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高.得到下面四个结论:①OA=OD;②AD⊥EF;③当∠A=90°时,四边形AEDF是正方形;④ AE2+DF2=AF2+DE2.上述结论中正确的是( )

A. ②③ B. ②④ C. ①②③ D. ②③④
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在直角△ABC中,∠ACB=90°,∠A=55°,将其折叠,使点A落在CB上的A′处,折痕CD,则∠A′DB= ( )

A. 10° B. 20° C. 30° D. 40°
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,BD是△ABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接ED,DG.
(1)请判断四边形EBGD的形状,并说明理由;
(2)若∠ABC=30°,∠C=45°,ED=2
,点H是BD上的一个动点,求HG+HC的最小值.
相关试题