【题目】我们已经知道,有一个内角是直角的三角形是直角三角形.其中直角所在的两条边叫直角边,直角所对的边叫斜边(如图①所示).数学家已发现在一个直角三角形中,两个直角边边长的平方和等于斜边长的平方.如果设直角三角形的两条直角边长度分别是
和
,斜边长度是
,那么可以用数学语言表达:
.
![]()
(1)在图②,若
,
,则
;
(2)观察图②,利用面积与代数恒等式的关系,试说明
的正确性.其中两个相同的直角三角形边AE、EB在一条直线上;
(3)如图③所示,折叠长方形ABCD的一边AD,使点D落在BC边的点F处,已知AB=8,BC=10,利用上面的结论求EF的长.
参考答案:
【答案】(1)12; (2)答案见解析;(3)5
【解析】
试题
(1)利用题中所给公式:
,代入
即可解出
的值;
(2)先用“梯形面积计算公式”计算出图②的面积,再分别计算图②中三个三角形的面积并相加得到图②的面积,利用两次所求面积相等得到等式,把等式变形即可得到公式:
;
(3)由矩形和折叠的性质可得:AF=AD=BC=10,DC=AB=8,EF=DE;在Rt△ABF中,由题中所给结论可计算出BF的长,从而可得FC的长;设EF=
,则DE=
,EC=
,这样在Rt△EFC中,由题中所给结论可得关于
的方程,解方程即可求得EF的长.
![]()
试题解析:
(1)∵
,代入
,
∴
;
(2)∵图①的面积=
=
,
图①的面积=S梯形ABCD=
=
,
∴
=
,
∴
,
即
.
(3)由四边形ABCD是矩形和折叠的性质可得,
,
,EF=DE,
由题意可得:在Rt△ABF中,
,即
,解得:
,
又∵
,
∴
,
设
,则
,
,
∵在Rt△ECF中,
,
∴
,
解得
,即
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)拼一拼,画一画:请你用4个长为a,宽为b的矩形拼成一个大正方形,并且正中间留下一个洞,这个洞恰好是一个小正方形。

(2)用不同方法计算中间的小正方形的面积,聪明的你能发现什么?
(3)当拼成的这个大正方形边长比中间小正方形边长多3cm时,它的面积就多24cm2,求中间小正方形的边长。
-
科目: 来源: 题型:
查看答案和解析>>【题目】小强的钱包内有10元钱、20元钱和50元钱的纸币各1张.
(1)若从中随机取出1张纸币,求取出纸币的金额是20元的概率;
(2)若从中随机取出2张纸币,求取出纸币的总额可购买一件51元的商品的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】宁波火车站北广场将于2015年底投入使用,计划在广场内种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵
(1)A,B两种花木的数量分别是多少棵?
(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一次函数y=kx+b(k≠0)与反比例函数y=
(m≠0)的图象有公共点A(1,a)、D(﹣2,﹣1).直线l与x轴垂直于点N(3,0),与一次函数和反比例函数的图象分别交于点B、C.
(1)求一次函数与反比例函数的解析式;
(2)根据图象回答,x在什么范围内,一次函数的值大于反比例函数的值;
(3)求△ABC的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知,如图,在△
中,
分别是△
的高和角平分线,若
,
;求
的度数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,等腰三角形ABC中,AC=BC=10,AB=12.

(1)动手操作:利用尺规作以BC为直径的⊙O,⊙O交AB于点D,⊙O交AC于点E,并且过点D作DF⊥AC交AC于点F.
(2)求证:直线DF是⊙O的切线;
(3)连接DE,记△ADE的面积为S1 , 四边形DECB的面积为S2 , 求
的值.
相关试题