【题目】如图,某校少年宫数学课外活动初三小组的同学为测量一座铁塔AM的高度如图,他们在坡度是i=1:2.5的斜坡DE的D处,测得楼顶的移动通讯基站铁塔的顶部A和楼顶B的仰角分别是60°、45°,斜坡高EF=2米,CE=13米,CH=2米.大家根据所学知识很快计算出了铁塔高AM.亲爱的同学们,相信你也能计算出铁塔AM的高度!请你写出解答过程.(数据
≈1.41,
≈1.73供选用,结果保留整数)![]()
参考答案:
【答案】解:∵斜坡的坡度是i=
═
,EF=2,
∴FD=2.5 EF=2.5×2=5,
∵CE=13,CE=GF,
∴GD=GF+FD=CE+FD=13+5=18.
在Rt△DBG中,
∵∠GDB=45°,
∴BG=GD=18,
在Rt△DAN中,
∵∠NAD=60°,ND=NG+GD=CH+GD=2+18=20,
∴AN=NDtan60°=20×
=20
,
∴AM=AN﹣MN=AN﹣BG=20
﹣18≈17(米).
答:铁塔高AC约17米
【解析】先根据DE的坡度i=1:2.5求出FD与EF的长,进而可得出GD的长,在Rt△DBG中,由等腰直角三角形的性质得出BG=GD,在Rt△DAN中,根据∠NAD=60°,ND=NG+GD=CH+GD可得出AN的长,再由AM=AN﹣MN=AN﹣BG可得出结论.
-
科目: 来源: 题型:
查看答案和解析>>【题目】随着“一带一路”的进一步推进,我国瓷器(“china”)更为“一带一路”沿线人民所推崇,一外国商户看准这一商机,向我国一瓷器经销商咨询工艺品茶具,得到如下信息:
(1)每个茶壶的批发价比茶杯多110元;
(2)一套茶具包括一个茶壶与四个茶杯;
(3)600元批发茶壶的数量与160元批发茶杯的数量相同.
根据以上信息:求茶壶与茶杯的批发价
(1)求茶壶与茶杯的批发价;
(2)若该商户购进茶杯的数量是茶壶数量的5倍还多20个,并且茶壶数量不超过30个,该商户打算将茶具按每套500元成套销售,剩余的茶杯每个70元零售,应如何进货才能使这批茶具获利最多?并求出最大利润.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等边三角形,E是AB的中点,连接CE并延长交AD于F.
(1)求证:△AEF≌△BEC;
(2)判断四边形BCFD是何特殊四边形,并说出理由;
(3)如图2,将四边形ACBD折叠,使D与C重合,HK为折痕,若BC=1,求AH的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某体育馆计划从一家体育用品商店一次性购买若干个气排球和篮球(每个气排球的价格都相同,每个篮球的价格都相同).经洽谈,购买1个气排球和2个篮球共需210元;购买2个气排球和3个篮球共需340元.
(1)每个气排球和每个篮球的价格各是多少元?
(2)该体育馆决定从这家体育用品商店一次性购买气排球和篮球共50个,总费用不超过3200元,且购买气排球的个数少于30个,应选择哪种购买方案可使总费用最低?最低费用是多少元? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知直线y=ax+b与双曲线y=
(x>0)交于A(x1 , y1),B(x2 , y2)两点(A与B不重合),直线AB与x轴交于P(x0 , 0),与y轴交于点C. 
(1)若A,B两点坐标分别为(1,3),(3,y2),求点P的坐标.
(2)若b=y1+1,点P的坐标为(6,0),且AB=BP,求A,B两点的坐标.
(3)结合(1),(2)中的结果,猜想并用等式表示x1 , x2 , x0之间的关系(不要求证明). -
科目: 来源: 题型:
查看答案和解析>>【题目】以图1(以O为圆心,半径1 的半圆)作为“基本图形”,分别经历如下变换能得到图2的序号是 (多填或错填得0分,少填酌情给分)
①只要向右平移1个 单位;
② 先以直线AB为对称轴进行对称变换,再向右平移1个单位;
③先绕着O旋转180°,再向右平移1个单位;
④只要绕着某点旋转180°.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB是⊙O的直径,点C为⊙O上一点,AE和过点C的切线互相垂直,垂足为E,AE交⊙O于点D,直线EC交AB的延长线于点P,连接AC,BC,PB:PC=1:2.

(1)求证:AC平分∠BAD;
(2)探究线段PB,AB之间的数量关系,并说明理由;
(3)若AD=3,求△ABC的面积.
相关试题