【题目】阅读下面材料:
小明遇到这样一个问题:
(1)如图1,AC∥BD,点E为直线AC上方一点,连接CE、DE,猜想∠C、∠D、∠E的数量关系,并证明.小明发现,可以过点E作MN∥AC来解决问题,如图2,请你完成解答:
(2)用学过的知识或参考小明的方法,解决下面的问题:
如图3,AB∥CD,P是平面内一点,连接AP、CP,使AP∥BD,∠APC=100°,BM、CM分别平分∠ABD,∠DCP交于点M,求∠M的度数.
![]()
参考答案:
【答案】(1)证明见解析;(2)∠CMB=140°.见解析.
【解析】
(1)过点E作MN∥AC, 从而得到MN//AC//BD,再由平行线的性质得到:∠NED=∠D,∠NEC=∠C,从而得到∠D=∠C+∠CED;
(2) 过点M作EF∥CD,过点P作HQ∥CD则EF∥HQ∥CD∥AB,再根据平行线的性质和角平分线的性质得到∠APC=180°-∠CPH-∠APQ,从而求得度数.
(1)证明:过点E作MN∥AC
∵AC∥BD
∴MN∥BD
∴∠NED=∠D
∵MN∥AC
∴∠NEC=∠C
∵∠NED=∠NEC+∠CED
∴∠D=∠C+∠CED;
(2)解:过点M作EF∥CD,过点P作HQ∥CD, 如图:
![]()
∵AB∥CD
∴EF∥HQ∥CD∥AB.
∵BM、CM分别平分∠ABD,∠DCP
∴设∠ABM=∠MBN=α,∠DCM=∠MCP=β
∵CD∥EF
∴∠DCM=∠CME=β
∵AB∥EF
∴∠ABM=∠BMF=α
∴∠CMB=180°-∠CME-∠BMF=180°-α-β
∵CD∥HQ
∴∠DCP=∠CPH=2α
∵AB∥HQ
∴∠BAP+∠APQ=180°
∵BN∥AP
∴∠BAP+∠ABN=180°
∴∠APQ=∠ABN=2β
∴∠APC=180°-∠CPH-∠APQ=180°-2α-2β=100°
∴α+β=40°
∴∠CMB=180°-α-β=140°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.
(1)如图一,若△ABC是等边三角形,且AB=AC=2,点D在线段BC上,
①求证:∠BCE+∠BAC=180°;
②当四边形ADCE的周长取最小值时,求BD的长.
(2)若∠BAC
60° ,当点D在射线BC上移动,则∠BCE和∠BAC 之间有怎样的数量关系?并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某市文化宫学习十九大有关优先发展教育的精神,举办了为某贫困山区小学捐赠书包活动.首次用2000元在商店购进一批学生书包,活动进行后发现书包数量不够,又购进第二批同样的书包,所购数量是第一批数量的3倍,但单价贵了4元,结果第二批用了6300元.
(1)求文化官第一批购进书包的单价是多少?
(2)商店两批书包每个的进价分别是68元和70元,这两批书包全部售给文化宫后,商店共盈利多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列语句:①有一边对应相等的两个直角三角形全等;②一般三角形具有的性质,直角三角形都具有;③有两边相等的两直角三角形全等;④两直角三角形的斜边为5cm,一条直角边都为3cm,则这两个直角三角形必全等.其中正确的有________个.
-
科目: 来源: 题型:
查看答案和解析>>【题目】平面直角坐标系中,A(m,0)、B(m+1,0)、E(2,0),其中-1≤m≤2,分别以AB、OE为边向上作正方形ABCD、OEFG.
(1)请直接写出线段AB的长;
(2)正方形ABCD沿x轴正半轴运动过程中与正方形OEFG重叠部分面积为S,求S与m的关系式.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,以BC为底边的等腰△ABC,点D,E,G分别在BC,AB,AC上,且EG∥BC,DE∥AC,延长GE至点F,使得BE=BF.

(1)求证:四边形BDEF为平行四边形;
(2)当∠C=45°,BD=2时,求D,F两点间的距离. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,已知∠AOB=90°,∠BOC=20°,OM平分∠AOC,ON平分∠BOC;
(1)求∠MON;
(2)∠AOB=α,∠BOC=β,求∠MON的度数.

相关试题