【题目】已知:如图一,抛物线y=ax2+bx+c与x轴正半轴交于A、B两点,与y轴交于点C,直线y=x-2经过A、C两点,且AB=2.
(1)求抛物线的解析式;
(2)若直线DE平行于x轴并从C点开始以每秒1个单位的速度沿y轴正方向平移,且分别交y轴、线段BC于点E,D,同时动点P从点B出发,沿BO方向以每秒2个单位速度运动,(如图2);当点P运动到原点O时,直线DE与点P都停止运动,连DP,若点P运动时间为t秒;设s=
,当t为何值时,s有最小值,并求出最小值.
(3)在(2)的条件下,是否存在t的值,使以P、B、D为顶点的三角形与△ABC相似;若存在,求t的值;若不存在,请说明理由.
![]()
参考答案:
【答案】(1)y="-1/4" x2+3/2 x-2(2)1(3)当t="2" /3 或t="10/" 7 时,以P、B、D为顶点的三角形与△ABC相似,证明见解析
【解析】试题分析:(1)首先根据直线AC的解析式确定点A、C的坐标,已知AB的长,进一步能得到点B的坐标;然后由待定系数法确定抛物线的解析式;(2)根据所给的s表达式,要解答该题就必须知道ED、OP的长;BP、CE长由计算可知,那么由OP=OB﹣BP求得OP长,由∠CED的三角函数值可得到ED的长,再代入s的表达式中可得到关于s、t的函数关系式,结合函数的性质即可得到s的最小值;(3)首先求出BP、BD的长,若以P、B、D为顶点的三角形与△ABC相似,已知的条件是公共角∠OBC,那么必须满足的条件是夹公共角的两组对应边成比例,分两种情况讨论即可.
试题解析:(1)由直线:y=x﹣2知:A(2,0)、C(0,﹣2);∵AB=2,∴OB=OA+AB=4,即B(4,0).设抛物线的解析式为:y=a(x﹣2)(x﹣4),代入C(0,﹣2),得:a(0﹣2)(0﹣4)=﹣2,解得 a=﹣
,∴抛物线的解析式:y=﹣
(x﹣2)(x﹣4)=﹣
x2+
x﹣2;(2)在Rt△OBC中,OB=4,OC=2,则tan∠OCB=2;∵CE=t,∴DE=2t,而OP=OB﹣BP=4﹣2t;
∴s=
=
=
(0<t<2),∴当t=1时,s有最小值,且最小值为1.
(3)在Rt△OBC中,OB=4,OC=2,则BC=2
;在Rt△CED中,CE=t,ED=2t,则CD=
t;
∴BD=BC﹣CD=2
﹣
t;若以P、B、D为顶点的三角形与△ABC相似,已知∠OBC=∠PBD,则有两种情况:①![]()
=
,解得 t=
;②![]()
=
,解得 t=
;综上所述,当t=
或
时,以P、B、D为顶点的三角形与△ABC相似.
-
科目: 来源: 题型:
查看答案和解析>>【题目】小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程s(km)与北京时间t(时)的函数图象如图所示.根据图象得到下列结论,其中错误的是( )

A.小亮骑自行车的平均速度是10km/h
B.妈妈比小亮提前0.5小时到达姥姥家
C.妈妈在距家12km处追上小亮
D.9:00妈妈追上小亮 -
科目: 来源: 题型:
查看答案和解析>>【题目】已知一元二次方程x2﹣6x﹣5=0两根为a、b,则
①a+b=
②ab= . -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,四边形ABCD是平行四边形,DE∥AC,交BC的延长线于点E,EF⊥AB于点F,求证:AD=CF.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图四边形ABCD是实验中学的一块空地的平面图,其中∠B=90°,AB=3m,BC=4m,CD=12m,AD=13m现计划在空地上植上草地绿化环境,若每平方米的草皮需150元;问需投入资金多少元?

-
科目: 来源: 题型:
查看答案和解析>>【题目】若(3x+a)(x﹣2)的乘积中不含x一次项,则a= .
-
科目: 来源: 题型:
查看答案和解析>>【题目】当x为何值时,代数式x2-13x+12的值与代数式-4x2+18的值相等?
相关试题