【题目】某一广告墙PQ旁有两根直立的木杆AB和CD , 某一时刻在太阳光下,木杆CD的影子刚好不落在广告墙PQ上,![]()
(1)你在图中画出此时的太阳光线CE及木杆AB的影子BF;
(2)若AB=6米,CD=3米 , CD到PQ的距离DQ的长为4米,求此时木杆AB的影长.
参考答案:
【答案】
(1)
解答:如图所示:
;
(2)
设木杆AB的影长BF为x米,
由题意,得
,
解得
.
答:木杆AB的影长是
米.
【解析】根据木杆CD的影子刚好不落在广告墙上可以画出此时的太阳光线CE,根据太阳光线是平行的,可以画出木杆AB的影子BF;根据在同一时刻,物高与影子成比例进行求解.
【考点精析】通过灵活运用相似三角形的应用和平行投影,掌握测高:测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长成比例”的原理解决;测距:测量不能到达两点间的举例,常构造相似三角形求解;太阳光线可以看成是平行光线,平行光线所形成的投影称为平行投影;作物体的平行投影:由于平行投影的光线是平行的,而物体的顶端与影子的顶端确定的直线就是光线,故根据另一物体的顶端可作出其影子即可以解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,下列图案均是由完全相同的“太阳型“图标按一定的规律拼搭而成:第1个图案需要2个图标,第2个图案需要4个图标,第3个图案需要7个图标,…,按此规律,第2018个图案需要图标的个数是_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】反比例函数
在第一象限的图象如图所示,过点A(1,0)作x轴的垂线,交反比例函数
的图象于点M , △AOM的面积为3.
(1)求反比例函数的解析式;
(2)设点B的坐标为(t , 0),其中t>1.若以AB为一边的正方形有一个顶点在反比例函数
的图象上,求t的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,分别是两根木杆及其影子的图形.

(1)哪个图形反应了阳光下的情形?哪个图反映了路灯下的情形?
(2)请你画出图中表示小树影长的线段. -
科目: 来源: 题型:
查看答案和解析>>【题目】为了从甲乙两人中选拔一人参加初中数学竞赛,每个月对他们进行一次测试,如图绘出了两个人赛前 5 次测验成绩(每次测验成绩都是 5 的倍数).

(1)分别求出甲乙两人 5 次测验成绩的平均数与方差;
(2)如果你是他们的辅导老师,应该选拔哪位学生参加这次竞赛,并简要说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点P是∠AOB的边OB上的一点.
(1)过点M画OB的平行线MN;
(2)过点P画OA的垂线,垂足为H;
(3)过点P画OB的垂线,交OA于点C:
则线段PH的长度是点P到 的距离, 是点C到直线OB的距离,因为直线外一点到直线上各点连接的所有线段中,垂线段最短,所以线段PC、PH、OC这三条线段大小关系是 .(用“<”号连接).

-
科目: 来源: 题型:
查看答案和解析>>【题目】小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:

(1)小明总共剪开了_______条棱.
(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.
(3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的5倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.
相关试题