【题目】给出下列命题:其中,真命题的个数是( )
(1)平行四边形的对角线互相平分;(2)对角线相等的四边形是矩形;
(3)菱形的对角线互相垂直平分;(4)对角线互相垂直的四边形是菱形.
A.4B.3C.2D.1
参考答案:
【答案】C
【解析】
根据真命题的定义和特殊平行四边形的判定方法逐项分析可得结论.
解:(1)是平行四边形的性质,故(1)正确;
(2)对角线相等且互相平分的四边形是矩形;故(2)错误;
(3)是菱形的性质,故(3)正确;
(4)对角线互相垂直平分的四边形是菱形;故(4)错误;
因此正确的结论是(1)(3);故选C.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(10分)如图,一次函数
与反比例函数
的图象交于A(1,4),B(4,n)两点.
(1)求反比例函数的解析式;
(2)求一次函数的解析式;
(3)点P是x轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某地某日最高气温为12℃,最低气温为-7℃,该日气温的极差是 ℃.
-
科目: 来源: 题型:
查看答案和解析>>【题目】一个正方形花圃边长增加2m,所得新正方形花圃的周长是28m,设原正方形花圃的边长为xm,由此可得方程为( )
A. x+2=28 B. 4(x+2)=28 C. 2(x+2)=28 D. 4x+2=28
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,圆上有五个点,这五个点将圆分成五等份(每一份称为一段弧长),把这五个点按顺时针方向依次编号为1,2,3,4,5.若从某一点开始,沿圆周顺时针方向行走,点的编号是数字几,就走几段弧长,我们把这种走法称为一次“移位”.
如:小明在编号为3的点,那么他应走3段弧长,即从3→4→5→1为第1次“移位”,这时他到达编号为1的点,那么他应走1段弧长,即从1→2为第2次“移位”.
若小明从编号为4的点开始,第1次“移位”后,他到达编号为 的点,…,第2016次“移位”后,他到达编号为 的点.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠CDE+∠CED=90°,EM平分∠CED,并与CD边交于点M.DN平分∠CED,并与EM交于点N.
(1)依题意补全图形,并猜想∠EDN+∠NED的度数等于 ;
(2)证明以上结论.
证明:∵DN平分∠CDE,EM平分∠CED,
∴∠EDN=
∠CDE,∠NED= .(理由: )
∵∠CDE+∠CED=90°,
∴∠EDN+∠NED= ×(∠ +∠ )= ×90°= °.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E、F分别是BC、CD上的点.且∠EAF=60°.探究图中线段BE、EF、FD之间的数量关系.
小王同学探究此问题的方法是,延长FD到点G,使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是 ;

探索延伸:
如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且∠EAF=
∠BAD,上述结论是否仍然成立,并说明理由;实际应用:
如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离?
相关试题