【题目】如图,在⊿
中,以
为直径的⊙
与边
交于点
,点
为⊙
上一点,连接
并延长交
于点
,连接
.
![]()
(1)若
;求证:
是⊙
的切线;
(2)若
.求⊙
的直径.
参考答案:
【答案】(1)证明见解析;(2)
的直径为9
【解析】
(1)利用圆内接四边形对角互补以及邻补角的定义得出∠FED=∠A,进而得出∠B+∠A=90°,求出答案;
(2)利用相似三角形的判定与性质首先得出
,进而求出即可.![]()
(1)证明:∵∠A+∠DEC=180°,∠FED+∠DEC= 180°,
∴∠FED=∠A,
∵∠B+∠FED=90°
∴∠B+∠A=90°,
∴∠BCA=90°,
∴OC⊥BC,
∵OA为半径
∴BC是
的切线
(2)解: ∵∠CFA=∠DFE,∠FED=∠A,
∴![]()
∴
∴![]()
解得:AC=9,
即
的直径为9
-
科目: 来源: 题型:
查看答案和解析>>【题目】合肥合家福超市为了吸引顾客,设计了一种促销活动:在三等分的转盘上依次标有“合”,“家”,“福”字样,购物每满200元可以转动转盘1次,转盘停下后,指针所指区域是“福”时,便可得到30元购物券(指针落在分界线上不计次数,可重新转动一次),一个顾客刚好消费400元,并参加促销活动,转了2次转盘.
(1)求出该顾客可能获得购物券的最高金额和最低金额;
(2)请用画树状图法或列表法求出该顾客获购物券金额不低于30元的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线y=ax2+bx+c(a≠0)上部分点的横坐标x与纵坐标y的对应值如下表:
x
…
﹣3
﹣2
﹣1
0
1
2
3
…
y
…
﹣4

﹣4

0

…
(1)求该抛物线的表达式;
(2)已知点E(4, y)是该抛物线上的点,点E关于抛物线的对称轴对称的点为点F,求点E和点F的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】世界500强H公司决定购买某演唱会门票奖励部分优秀员工,演唱会的购票方式有以下两种,
方式一:若单位赞助广告费10万元,则该单位所购门票的价格为每张0.02万元(其中总费用=广告赞助费+门票费);
方式二:如图所示,设购买门票x张,总费用为y万元
(1)求用购票“方式一”时y与x的函数关系式;
(2)若H、A两家公司分别釆用方式一、方式二购买本场演唱会门票共400张,且A公司购买超过100张,两公司共花费27.2万元,求H、A两公司各购买门票多少张?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点E,F分别在矩形ABCD的边AB,BC上,连接EF,将△BEF沿直线EF翻折得到△HEF,AB=8,BC=6,AE:EB=3:1.
(1)如图1,当∠BEF=45°时,EH的延长线交DC于点M,求HM的长;
(2)如图2,当FH的延长线经过点D时,求tan∠FEH的值;
(3)如图3,连接AH,HC,当点F在线段BC上运动时,试探究四边形AHCD的面积是否存在最小值?若存在,求出四边形AHCD的面积的最小值;若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,在
中,
以
的中点
为圆心,作半圆与
相切,点
分别是半圆和边
上的动点,连接
则
的最大值与最小值的和是( )
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中四边形OABC是边长为6的正方形,平行于对角线AC的直线l从O出发,沿x轴正方向以每秒一个单位长度的速度运动,运动到直线l与正方形没有交点为止,设直线l扫过正方形OABC的面积为S,直线l的运动时间为t(秒),下列能反映S与t之间的函数图象的是( )

A.
B.
C.
D.
相关试题