【题目】如图,在四边形ABCD中,对角线AC、BD相交于点O,其中AC+BD=14,CD=5.
(1)若四边形ABCD是平行四边形,则△OCD的周长为_____________;
(2) 若四边形ABCD是矩形,则AD的长为_____________;
(3) 若四边形ABCD是菱形,则菱形的面积为___________.
![]()
参考答案:
【答案】 12,
, 24
【解析】分析:(1)根据平行四边形性质求出OD+OC即可求出答案;
(2)根据矩形性质求出AC,根据勾股定理求出即可;
(3)根据矩形性质求出OD+OC,根据勾股定理求出OC×OD,进一步求出AC×BD,即可求出面积.
详解:(1) ∵四边形ABCD是平行四边形,
,
,
,
,
的周长为
,
故答案为:12.
(2)
矩形ABCD,
,
,
由勾股定理得:
,
故答案为:
;
![]()
(3)
,
四边形ABCD是菱形,
由勾股定理得:
,
,
,
,
∴菱形的面积为是
,
故答案为:24.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字0所对应的点与数轴上的数-2所对应的点重合,再让圆沿着数轴按顺时针方向滚动,那么数轴上的数-2017将与圆周上的哪个数字重合( )

A. 0 B. 1 C. 2 D. 3
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,四边形ABCD为正方形,已知点A(﹣6,0),D(﹣7,3),点B、C在第二象限内.
(1)求点B的坐标。
(2)将正方形ABCD以每秒1个单位的速度沿x轴向右平移t秒,若存在某一时刻t,使在第一象限内点B、D两点的对应点B′、D′正好落在某反比例函数的图象上,请求出此时t的值以及这个反比例函数的解析式;
(3)在(2)的情况下,问是否存在x轴上的点P和反比例函数图象上的点Q,使得以P、Q、B′、D′四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点P、Q的坐标;若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】平行四边形ABCD中,∠ABC的角平分线BE将边AD分成长度为5cm和6cm的两部分,则平行四边形ABCD的周长为__________________cm.

-
科目: 来源: 题型:
查看答案和解析>>【题目】把下列各数填在相应的集合内:
100,﹣0.82,﹣30
,3.14,﹣2,0,﹣2011,﹣3.1
,
,﹣
,2.010010001…,正分数集合:{ …}
整数集合:{ …}
负有理数集合:{ …}
非正整数集合;{ …}
无理数集合:{ …}.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,图中的小方格都是边长为1的正方形,△ABC的顶点坐标分别为:A(-3,0),B(-1,-2),C(-2,2).
(1)请在图中画出△ABC绕B点顺时针旋转90°后的图形△A′BC′.
(2)请直接写出以A′、B、C′为顶点平行四边形的第4个顶点D的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数y=x2+bx+c(b,c为常数).
(1)当b=2,c=﹣3时,求二次函数图象的顶点坐标;
(2)当c=10时,若在函数值y=1的情况下,只有一个自变量x的值与其对应,求此时二次函数的解析式;
(3)当c=b2时,若在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y的最小值为21,求此时二次函数的解析式.
相关试题