【题目】如图,点A在直线l上,点B在直线l外,点B关于直线l的对称点为C,连接AC,过点B作BD⊥AC于点D,延长BD至E使BE=AB,连接AE并延长与BC的延长线交于点F.
![]()
(1)补全图形;
(2)若∠BAC=2α,求出∠AEB的大小(用含α的式子表示);
(3)用等式表示线段EF与BC的数量关系,并证明.
参考答案:
【答案】(1)见解析;(2)∠AEB=
;(3)BC=
,证明见解析.
【解析】
(1)根据题意作图即可补全图形;
(2)先根据直角三角形两锐角互余的性质求出∠ABD,再由BE=AB,可得∠AEB=∠BAE,然后利用三角形的内角和定理即可求得结果;
(3)设l与BC交于点H,过点E作EG⊥BF于点G,如图3,先利用轴对称的性推出∠BAH=∠CAH=α,再根据质余角的性质推出∠CBD=∠CAH=α,进一步利用(2)的结论和三角形的外角性质推出∠F=45°,进而可得
,然后根据AAS可证明△ABH≌△BEG,从而得BH=EG,而BC=2BH,进一步即可得出EF与BC的数量关系.
解:(1)补全图形如图1所示:
![]()
(2)∵BD⊥AC,∠BAD=2α,∴∠ABD=90°-2α,
∵BE=AB,∴∠AEB=∠BAE=
;
(3)线段EF与BC的数量关系是:BC=
.
证明:设l与BC交于点H,过点E作EG⊥BF于点G,如图2,
∵点B关于直线l的对称点为C,∠BAC=2α,
∴BH=CH,∠BAH=∠CAH=α,
∵AH⊥BC,BD⊥AC,∴∠CAH+∠ACH=90°,∠CBD+∠ACH=90°,
∴∠CBD=∠CAH=α,
∵∠AEB
,∠AEB=∠CBD+∠F,
∴∠F=45°,则△EFG为等腰直角三角形,∴
,
∵∠BAH=∠EBG=α,∠AHB=∠BGE=90°,AB=BE,
∴△ABH≌△BEG(AAS),
∴BH=EG,
∵BC=2BH,∴BC=2EG=
.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】小明与小志要到延庆冬奥综合训练馆参加滑冰训练,他们约定从德胜门出发自驾前往,但他们在选择路线时产生了分歧.根据导航提示小明选择方案1前往,小志选择方案2前往,由于方案1比方案2的路线长,而小明还想大家一起到达.已知小明的平均车速比小志的平均车速每小时快8千米,请你帮助小明算一算,他的平均车速为每小时多少千米,他们就可以同时到达?

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知∠MAN=30°,点B在射线AM上,且 AB=6,点C在射线AN上.

(1)若△ABC是直角三角形,求AC的长;
(2)若△ABC是等腰三角形,则满足条件的C点有 个;
(3)设BC=x,当△ABC唯一确定时, 直接写出
的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线y=x2+bx+c的对称轴为x=2,且过点C(0,3)
(1)求此抛物线的解析式;
(2)证明:该抛物线恒在直线y=﹣2x+1上方.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,已知在直角梯形OABC中,AB∥OC,BC⊥x轴于点C、A(1,1)、B(3,1).动点P从O点出发,沿x轴正方向以每秒1个单位长度的速度移动.过P点作PQ垂直于直线OA,垂足为Q.设P点移动的时间为t秒(0<t<4),△OPQ与直角梯形OABC重叠部分的面积为S.
(1)求经过O、A、B三点的抛物线解析式;
(2)求S与t的函数关系式;
(3)将△OPQ绕着点P顺时针旋转90°,是否存在t,使得△OPQ的顶点O或Q在抛物线上?若存在,直接写出t的值;若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为x=
,且经过点(2,0),下列说法:①abc<0;②﹣2b+c=0;③4a+2b+c<0;④若(
,y1)、(
,y2)是抛物线上的两点,则y1<y2;⑤
>m(am+b)(其中m≠
).其中说法正确的是_____
-
科目: 来源: 题型:
查看答案和解析>>【题目】规定:[m]为不大于m的最大整数;
(1)填空:[3.2]= ,[-4.8]= ;
(2)已知:动点C在数轴上表示数a,且-2≤[a]≤4,则a的取值范围;
(3)求方程4x-3[x]+5=0的整数解.
相关试题