【题目】如图,菱形ABOC的AB,AC分别与⊙O相切于点D、E,若点D是AB的中点,则∠DOE=__________.
![]()
参考答案:
【答案】60°
【解析】由AB,AC分别与⊙O相切于点D、E,可得∠BDO=∠ADO=∠AEO=90°,根据已知条件可得到BD=
OB,在Rt△OBD中,求得∠B=60°,继而可得∠A=120°,再利用四边形的内角和即可求得∠DOE的度数.
【详解 】∵AB,AC分别与⊙O相切于点D、E,
∴∠BDO=∠ADO=∠AEO=90°,
∵四边形ABOC是菱形,∴AB=BO,∠A+∠B=180°,
∵BD=
AB,
∴BD=
OB,
在Rt△OBD中,∠ODB=90°,BD=
OB,∴cos∠B=
,∴∠B=60°,
∴∠A=120°,
∴∠DOE=360°-120°-90°-90°=60°,
故答案为:60°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,△ABC的三个顶点的位置如图所示,将△ABC水平向左平移3个单位,再竖直向下平移2个单位。
(1)读出△ABC的三个顶点坐标;
(2)请画出平移后的△A′B′C′,并直接写出点A/、B′、C′的坐标;
(3)求平移以后的图形的面积 。

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一次函数
的图像与
轴、
轴交于
、
两点,
是
轴正半轴上的一个动点,连接
,将
沿
翻折,点
恰好落在
上,则点
的坐标为______.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线
都与直线l垂直,垂足分别为M,N,MN=1,正方形ABCD的边长为
,对角线AC在直线l上,且点C位于点M处,将正方形ABCD沿l向右平移,直到点A与点N重合为止,记点C平移的距离为x,正方形ABCD的边位于
之间部分的长度和为y,则y关于x的函数图象大致为( )
A.
B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】(模型建立)
(1)如图1,等腰直角三角形
中,
,
,直线
经过点
,过
作
于点
,过
作
于点
.求证:
;(模型应用)
(2)已知直线
:
与坐标轴交于点
、
,将直线
绕点
逆时针旋转
至直线
,如图2,求直线
的函数表达式;(3)如图3,长方形
,
为坐标原点,点
的坐标为
,点
、
分别在坐标轴上,点
是线段
上的动点,点
是直线
上的动点且在第四象限.若
是以点
为直角顶点的等腰直角三角形,请直接写出点
的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两车在笔直的公路上同起点、同方向、同终点匀速行驶
,先到终点的人原地休息.已知甲先出发
,在整个过程中,甲、乙两车的距离
与甲出发的时间
之间的关系如图所示.
(1)甲的速度为______
,乙的速度为______
;(2)说明
点表示的意义,求出
点坐标;(3)求出线段
的函数关系式,并写出
的取值范围;(4)甲出发多长时间两车相距
,直接写出结果. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知,直线AB∥DC,点P为平面上一点,连接AP与CP.

(1)如图1,点P在直线AB、CD之间,当∠BAP=60°,∠DCP=20°时,求∠APC.
(2)如图2,点P在直线AB、CD之间,∠BAP与∠DCP的角平分线相交于点K,写出∠AKC与∠APC之间的数量关系,并说明理由.
(3)如图3,点P落在CD外,∠BAP与∠DCP的角平分线相交于点K,∠AKC与∠APC有何数量关系?并说明理由.
相关试题