【题目】如图,在Rt△ABC中,∠B=90°,AB=7 cm,AC=25 cm.点P从点A沿AB方向以1 cm/s的速度运动至点B,点Q从点B沿BC方向以6 cm/s的速度运动至点C,P,Q两点同时出发.
(1)求BC的长;
(2)当点P,Q运动2 s时,求P,Q两点之间的距离;
(3)P,Q两点运动几秒时,AP=CQ?
![]()
参考答案:
【答案】(1)BC=24 cm;(2)PQ=13 cm;(3)P,Q两点运动
s时,AP=CQ.
【解析】
(1)在Rt△ABC中,∠B=90°,AB=7 cm,AC=25 cm根据勾股定理可得BC2=AC2-AB2=252-72=242,求出BC=24 cm.
(2)连接PQ,由题意知BP=7-2=5(cm),BQ=6×2=12(cm),在Rt△BPQ中,由勾股定理得:
PQ=BP2+BQ2=52+122=132,进而求出PQ=13 cm.
(3)设P,Q两点运动t s时,AP=CQ,则可得t=24-6t,解得t=
.
解:(1)∵在Rt△ABC中,∠B=90°,AB=7 cm,AC=25 cm
∴BC2=AC2-AB2=252-72=242,
∴BC=24 cm.
(2)连接PQ,
由题意知BP=7-2=5(cm),BQ=6×2=12(cm),
在Rt△BPQ中,由勾股定理,得:
PQ=BP2+BQ2=52+122=132,
∴PQ=13 cm.
(3)设P,Q两点运动t s时,
AP=CQ,则t=24-6t,
解得t=
.
答:P,Q两点运动
s时,AP=CQ.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,OE平分∠AOC,OF平分∠BOC,且∠BOC=60°,若∠AOC+∠EOF=156°,则∠EOF的度数是( )

A. 88° B. 30° C. 32° D. 48°
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,将长方形ABCD沿直线BD折叠,使点C落在点C′处,BC′交AD于点E,AD=16,AB=8,求DE的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,某人到岛上去探宝,从A处登陆后先往东走4 km,又往北走1.5 km,遇到障碍后又往西走2 km,再折回向北走到4.5 km处往东一拐,仅走0.5 km就找到宝藏.问登陆点A与宝藏埋藏点B之间的距离是多少?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,线段
cm,点C从点P出发以1cm/s的速度沿AB向左运动,点D从点B出发以2cm/s的速度沿AB向左运动(点C在线段AP上,D在线段BP上)(1)若C,D 运动到任意时刻都有PD=2AC,试说明PB=2AP;
(2)在(1)的条件下,Q是直线AB上一点,若AQ-BQ=PQ,求PQ的值;
(3)在(1)的条件下,若C,D运动了一段时间后恰有AB=2CD,这时点C停止运动,点D继续在线段PB上运动,M,N 分别是CD,PD的中点,求MN的值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,直线SN与直线WE相交于点O,射线ON表示正北方向,射线OE表示正东方向,已知射线OB的方向是南偏东m°,射线OC的方向为北偏东n°,且m°的角与n°的角互余.
(1)①若m=60,写出射线OC的方向.(直接回答)
②请直接写出图中所有与∠BOE互余的角及与∠BOE互补的角.
(2)如图2,若射线OA是∠BON的平分线,
①若m=70,求∠AOC的度数.
②若m为任意角度,求∠AOC的度数.(结果用含m的式子表示)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,则sin∠AOB的值等于( )

A.
B.
C.
D.
相关试题