【题目】如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于( )![]()
A.4
B.6或4
C.8
D.4或8
参考答案:
【答案】D
【解析】解:设AA′=x,AC与A′B′相交于点E,
∵△ACD是正方形ABCD剪开得到的,
∴△ACD是等腰直角三角形,
∴∠A=45°,
∴△AA′E是等腰直角三角形,
∴A′E=AA′=x,
A′D=AD﹣AA′=12﹣x,
∵两个三角形重叠部分的面积为32,
∴x(12﹣x)=32,
整理得,x2﹣12x+32=0,
解得x1=4,x2=8,
即移动的距离AA′等4或8.
故选D.![]()
【考点精析】解答此题的关键在于理解平移的性质的相关知识,掌握①经过平移之后的图形与原来的图形的对应线段平行(或在同一直线上)且相等,对应角相等,图形的形状与大小都没有发生变化;②经过平移后,对应点所连的线段平行(或在同一直线上)且相等.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.

(1)求证:DE是⊙O的切线;
(2)若AE=6,∠D=30°,求图中阴影部分的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知三元一次方程组
.
(1)求该方程组的解;
(2)若该方程组的解使ax+2y+z<0成立,求整数a的最大值. -
科目: 来源: 题型:
查看答案和解析>>【题目】在直角坐标系中,点A(1,﹣2)关于原点对称的点的坐标是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,地面BD上两根等长立柱AB,CD之间悬挂一根近似成抛物线y=
x2﹣
x+3的绳子.
(1)求绳子最低点离地面的距离;
(2)因实际需要,在离AB为3米的位置处用一根立柱MN撑起绳子(如图2),使左边抛物线F1的最低点距MN为1米,离地面1.8米,求MN的长;
(3)将立柱MN的长度提升为3米,通过调整MN的位置,使抛物线F2对应函数的二次项系数始终为
,设MN离AB的距离为m,抛物线F2的顶点离地面距离为k,当2≤k≤2.5时,求m的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】(7分)我市某校在推进新课改的过程中,开设的体育选修课有:A:篮球,B:足球,C:排球,D:羽毛球,E:乒乓球,学生可根据自己的爱好选修一门,学校李老师对某班全班学生的选课情况进行调查统计,制成了两幅不完整的统计图(如图).

(1)请你求出该班的总人数,并补全频数分布直方图;
(2)表示“足球”所在扇形的圆心角是多少度?
(3)该班班委4人中,1人选修篮球,2人选修足球,1人选修排球,李老师要从这4人中人选2人了解他们对体育选修课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】抛物线y=x2﹣2x﹣8与x轴的交点坐标是 .
相关试题