【题目】如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是( ) ![]()
A.(2,﹣3)
B.(2,3)
C.(3,2)
D.(3,﹣2)
参考答案:
【答案】C
【解析】解:∵点A坐标为(0,a), ∴点A在该平面直角坐标系的y轴上,
∵点C、D的坐标为(b,m),(c,m),
∴点C、D关于y轴对称,
∵正五边形ABCDE是轴对称图形,
∴该平面直角坐标系经过点A的y轴是正五边形ABCDE的一条对称轴,
∴点B、E也关于y轴对称,
∵点B的坐标为(﹣3,2),
∴点E的坐标为(3,2).
故选:C.
由题目中A点坐标特征推导得出平面直角坐标系y轴的位置,再通过C、D点坐标特征结合正五边形的轴对称性质就可以得出E点坐标了.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,若∠2=∠6,则____∥___;如果∠BCD+∠ADC=180°,那么____∥____;如果∠9=_____,那么AD∥BC;如果∠9=____,那么AB∥CD;

-
科目: 来源: 题型:
查看答案和解析>>【题目】某小学为了了解各年级留守儿童的数量,对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,20.对于这组数据,下列说法错误的是( )
A.平均数是15
B.众数是10
C.中位数是17
D.方差是
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,A、B、C在同一直线上,
(1)若∠A=∠3,依据__________,可得______∥_______;
(2)若∠______=∠______,则依据内错角相等,两直线平行,可得DB∥EC;
(3)若∠______+∠_______=180°,则AD∥BE,依据是____________;

-
科目: 来源: 题型:
查看答案和解析>>【题目】.如图所示,已知△ABC和△BDE都是等边三角形,下列结论:①AE=CD;②BF=BG;③BH平分∠AHD;④∠AHC=60°;⑤△BFG是等边三角形;⑥FG∥AD,其中正确的有( )

A. 3个 B. 4个 C. 5个 D. 6个
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠BAC=90°,AB=AC,AD是经过A点的一条直线,且B、C在AD的两侧,BD⊥AD于D,CE⊥AD于E,交AB于点F,CE=10,BD=4,则DE的长为( )

A. 6 B. 5 C. 4 D. 8
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,∠ABC=∠ADC,BF、DE分别平分∠ABC与∠ADC.∠1=∠3,求证:AB∥DC.

证明:∵∠ABC=∠ADC ( )
∴
( )∵BF、DE分别平分∠ABC与∠ADC ( )
∴
( )∴∠______=∠______ ( )
∵∠1=∠3( )
∴∠2=∠______ (等量代换)
∴____∥____ ( )
相关试题