【题目】如图,已知抛物线y=x2+bx+c与x轴交于A,B两点(点A在点B的左侧)与y轴交于点C(0,-3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D,点E为y轴上一动点,CE的垂直平分线交抛物线于P,Q两点(点P在第三象限)
![]()
(1)求抛物线的函数表达式和直线BC的函数表达式;
(2)当△CDE是直角三角形,且∠CDE=90° 时,求出点P的坐标;
(3)当△PBC的面积为
时,求点E的坐标.
参考答案:
【答案】(1)y=x2-2x-3;直线BC的函数表达式为y=x-3;(2)P的坐标为(1-
,-2);(3)E的坐标为(0,-
).
【解析】
试题分析:(1)用对称轴公式即可得出b的值,再利用抛物线与y轴交于点C(0,-3),求出抛物线解析式即可;由抛物线的解析式可求出B的坐标,进而可求出线BC的函数表达式;
(2)当∠CDE=90°时,则CE为斜边,则DG2=CGGE,即1=(OC-OG)(2-a),求出a的值,进而得出P点坐标;
(3)当△PBC的面积为
时,过P作PK∥x 轴,交直线BC于点K,设P(m,n),则n=m2-2m-3,由已知条件可得:S△PBC=S△PKC+S△PKB=
,进而可求出P的坐标,又因为点P在CE垂直平分线上,所以E的坐标可求出.
试题解析:(1)∵抛物线的对称轴为直线x=1,
∴-
=1,
∴b=-2
∵抛物线与y轴交于点C(0,-3),
∴c=-3,
∴抛物线的函数表达式为:y=x2-2x-3;
∵抛物线与x轴交于A、B两点,
当y=0时,x2-2x-3=0.
∴x1=-1,x2=3.
∵A点在B点左侧,
∴A(-1,0),B(3,0)
设过点B(3,0)、C(0,-3)的直线的函数表达式为y=kx+m,
则
,
∴![]()
∴直线BC的函数表达式为y=x-3;
(2)∵Rt△CDE中∠CDE=90°,直线BC的解析式为y=x-3,
∴∠OCB=45°,
∵点D在对称轴x=1与直线y=x-3交点上,
∴D坐标为(1,-2 )
Rt△CDE为等腰直角三角形易得E的坐标(0,-1),
∵点P在CE垂直平分线上,
∴点P纵坐标为-2,
∵点P在y=x2-2x-3上,
∴x2-2x-3=-2,
解得:x=1±
,
∵P在第三象限,
∴P的坐标为(1-
,-2);
(3)过P作PK∥x轴,交直线BC于点K,设P(m,n),则n=m2-2m-3
![]()
∵直线BC的解析式为y=x-3,
∴K的坐标为(n+3,n),
∴PK=n+3-m=m2-3m,
∵S△PBC=S△PKC+S△PKB=
,
∴
×3KP=![]()
∴m2-3m=
,
解得:m=-
或
,
∵P在第三象限,
∴P的坐标为(-
,-
)
∵点P在CE垂直平分线上,
∴E的坐标为(0,-
)
-
科目: 来源: 题型:
查看答案和解析>>【题目】以下三条线段为边,能组成三角形的是( )
A.1cm、2cm、3cm
B.2cm、2cm、4cm
C.3cm、4cm、5 cm
D.4cm、8cm、2cm -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直与x轴,垂足为点B,反比例函数
(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3.
(1)求反比例函数
的解析式;(2)求cos∠OAB的值;
(3)求经过C、D两点的一次函数解析式.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一次函数y=kx+b与反比例函数
的图象交于A(m,6),B(3,n)两点.(1)求一次函数的解析式;
(2)根据图象直接写出
的x的取值范围;(3)求△AOB的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知等腰△ABC,AC=BC=10.AB=12,以BC为直径作⊙O交AB于点D,交AC于点G,DF⊥AC,垂足为F,交CB的延长线于点E.

(1)求证:直线EF是⊙O的切线;
(2)求DF的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,等腰Rt△AOB的斜边OB在x轴上,直线y=3x-4经过等腰Rt△AOB的直角顶点A,交y轴于C点,双曲线y=
也经过A点.
(1)求点A的坐标和k的值;
(2)若点P为x轴上一动点.在双曲线上是否存在一点Q,使得△PAQ是以点A为直角顶点的等腰三角形?若存在,求出点Q的坐标;若不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列说法正确的有( )
①所有的有理数都能用数轴上的点表示;
②符号不同的两个数互为相反数;
③有理数分为正数和负数;
④两数相减,差一定小于被减数;
⑤两数相加,和一定大于任何一个加数.
A. 1个 B. 2个 C. 3个 D. 4个
相关试题