【题目】如图,在△ABC中,∠ACB=90°,∠ABC=60°,AB=6cm,将△ABC以点B为中心顺时针旋转,使点C旋转到AB边延长线上的点D处,则AC边扫过的图形(阴影部分)的面积是_____cm2.(结果保留π).
![]()
参考答案:
【答案】9π
【解析】
根据直角三角形两锐角互余求出∠BAC=30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得BC=
AB,然后求出阴影部分的面积=S扇形ABE﹣S扇形BCD,列计算即可得解.
∵∠C是直角,∠ABC=60°,
∴∠BAC=90°﹣60°=30°,
∴BC=
AB=
×6=3(cm),
∵△ABC以点B为中心顺时针旋转得到△BDE,
∴S△BDE=S△ABC,∠ABE=∠CBD=180°﹣60°=120°,
∴阴影部分的面积=S扇形ABE+S△BDE﹣S扇形BCD﹣S△ABC
=S扇形ABE﹣S扇形BCD
=
﹣
=12π﹣3π
=9π(cm2).
故答案为:9π.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE,BE分别交于点G、H.∠CBE=∠BAD,有下列结论:①FD=FE;②AH=2CD;③BCAD=
AE2;④S△BEC=S△ADF.其中正确的有( )
A. 1个 B. 2个 C. 3个 D. 4个
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,反比例函数y=
(x>0)的图象交矩形OABC的边AB于点D,交BC于点E,且BE=2EC,若四边形ODBE的面积为8,则k=_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,如图在ABCD中,点E为AB上一点,连接CE、DE,且CE⊥AB,CE=AB,点F为BC上一点,连接DF交CE于点G,∠CGD=∠B;

(1)若CG=2,AD=3,求GE的长;
(2)若CF=
DE,求证:AD=CG+BE. -
科目: 来源: 题型:
查看答案和解析>>【题目】校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道
上确定点D,使CD与
垂直,测得CD的长等于21米,在
上点D的同侧取点A、B,使∠CAD=300,∠CBD=600.(1)求AB的长(精确到0.1米,参考数据:
);(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:


(1)九(1)班的学生人数为 ,并把条形统计图补充完整;
(2)扇形统计图中m= ,n= ,表示“足球”的扇形的圆心角是 度;
(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点G是正方形ABCD对角线CA的延长线一点,对角线BD与AC交于点O,以线段AG为边作一个正方形AEFG,连接EB、GD.
(1)求证:EB=GD;
(2)若AB=5,AG=2
,求EB的长.
相关试题