【题目】校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道
上确定点D,使CD与
垂直,测得CD的长等于21米,在
上点D的同侧取点A、B,使∠CAD=300,∠CBD=600.
(1)求AB的长(精确到0.1米,参考数据:
);
(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.
![]()
参考答案:
【答案】(1)24.2米(2) 超速,理由见解析
【解析】解:(1)由題意得,
在Rt△ADC中,![]()
,
在Rt△BDC中,
,
∴AB=AD-BD=
(米)。
(2)∵汽车从A到B用时2秒,∴速度为24.2÷2=12.1(米/秒),
∵12.1米/秒=43.56千米/小时,∴该车速度为43.56千米/小时。
∵43.56千米/小时大于40千米/小时,∴此校车在AB路段超速。
(1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,从而求得AB的长。
(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速。
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,反比例函数y=
(x>0)的图象交矩形OABC的边AB于点D,交BC于点E,且BE=2EC,若四边形ODBE的面积为8,则k=_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,如图在ABCD中,点E为AB上一点,连接CE、DE,且CE⊥AB,CE=AB,点F为BC上一点,连接DF交CE于点G,∠CGD=∠B;

(1)若CG=2,AD=3,求GE的长;
(2)若CF=
DE,求证:AD=CG+BE. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠ACB=90°,∠ABC=60°,AB=6cm,将△ABC以点B为中心顺时针旋转,使点C旋转到AB边延长线上的点D处,则AC边扫过的图形(阴影部分)的面积是_____cm2.(结果保留π).

-
科目: 来源: 题型:
查看答案和解析>>【题目】某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:


(1)九(1)班的学生人数为 ,并把条形统计图补充完整;
(2)扇形统计图中m= ,n= ,表示“足球”的扇形的圆心角是 度;
(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点G是正方形ABCD对角线CA的延长线一点,对角线BD与AC交于点O,以线段AG为边作一个正方形AEFG,连接EB、GD.
(1)求证:EB=GD;
(2)若AB=5,AG=2
,求EB的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】对于给定的函数,自变量取x1,x2时,对应的函数值分别记为y1,y2.自变量取
时.对应的函数值记为
,例如一次函数y=2x+1,自变量取x1,x2时,对应的函数值分别为y1=2x1+1,y2=2x2+1,自变量取
时,对应的函数值为
=2
+1,若对于给定的函数,自变量取x1,x2(x1≠x2)时,总有
,则称函数为凸凸函数.对于给定的函数总有
,则称函数为凹凹函数.对于给定的函数总有
,则称函数为平平函数.(1)求证:函数y=2x是平平函数;
(2)判断函数y=ax2是凸凸函数,凹凹函数还是平平函数.
相关试题