【题目】已知,如图在ABCD中,点E为AB上一点,连接CE、DE,且CE⊥AB,CE=AB,点F为BC上一点,连接DF交CE于点G,∠CGD=∠B;
![]()
(1)若CG=2,AD=3,求GE的长;
(2)若CF=
DE,求证:AD=CG+BE.
参考答案:
【答案】(1)
;(2)见解析
【解析】
(1)求出
,根据勾股定理计算即可求解;
(2)可得
,根据角的和差关系可得
,再根据线段的和差关系即可得证.
解:(1)在ABCD中,
∵AB∥CD,CE⊥AB,
∴CD⊥CE,
∴∠DCE=∠CEB=90°,
∵CE=AB,
∴CE=CD,
∴△CDE是等腰三角形,
∵∠CGD=∠B,
∴△CDG≌△ECB,
∴DG=BC=AD=3,
∴CD=
,
GE=
;
(2)CF=
,
∴∠CDF=∠CFD=∠BCE,∠CGD=∠BCE+∠CFD=2∠CDF,
∴∠CDF=30°,
DG=2CG,BC=2BE,CG=BE=
,
∴AD=BC=CG+BE.
即AD=CG+BE.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图1,直线
与x轴、y轴分别交于点A、C两点,点B的横坐标为2.
图1 图2
(1)求A、C两点的坐标和抛物线的函数关系式;
(2)点D是直线AC上方抛物线上任意一点,P为线段AC上一点,且S△PCD=2S△PAD ,求点P的坐标;
(3)如图2,另有一条直线y=-x与直线AC交于点M,N为线段OA上一点,∠AMN=∠AOM.点Q为x轴负半轴上一点,且点Q到直线MN和直线MO的距离相等,求点Q的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE,BE分别交于点G、H.∠CBE=∠BAD,有下列结论:①FD=FE;②AH=2CD;③BCAD=
AE2;④S△BEC=S△ADF.其中正确的有( )
A. 1个 B. 2个 C. 3个 D. 4个
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,反比例函数y=
(x>0)的图象交矩形OABC的边AB于点D,交BC于点E,且BE=2EC,若四边形ODBE的面积为8,则k=_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠ACB=90°,∠ABC=60°,AB=6cm,将△ABC以点B为中心顺时针旋转,使点C旋转到AB边延长线上的点D处,则AC边扫过的图形(阴影部分)的面积是_____cm2.(结果保留π).

-
科目: 来源: 题型:
查看答案和解析>>【题目】校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道
上确定点D,使CD与
垂直,测得CD的长等于21米,在
上点D的同侧取点A、B,使∠CAD=300,∠CBD=600.(1)求AB的长(精确到0.1米,参考数据:
);(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:


(1)九(1)班的学生人数为 ,并把条形统计图补充完整;
(2)扇形统计图中m= ,n= ,表示“足球”的扇形的圆心角是 度;
(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.
相关试题