【题目】如图,在菱形
中,
,
,点
是
边的中点,点
是
边上一动点(不与点
重合),延长
交射线
于点
,连接
,
.
![]()
(1)求证:四边形
是平行四边形;
(2)填空:
①当
的值为_______时,四边形
是矩形;
②当
的值为______时,四边形
是菱形.
参考答案:
【答案】(1)见解析;(2)①3,②6
【解析】
(1)根据菱形的性质得出
,再利用平行线的性质以及线段中点的性质得出
,即可得出答案;
(2)①由∠AMD=90°,根据含30度直角三角形的性质即可得出答案;②判定△AMD是等边三角形即可得出答案.
解:(1)证明:∵四边形
是菱形,
∴
,∴
,
∵点
是
边的中点,∴
,
在
和
中,![]()
∴
,
∴
,
∴四边形
是平行四边形;
(2)①当
的值为3时,四边形
是矩形.
当四边形
是矩形时,∠AMD=90°,
∵∠DAM=60°,AD=AB=6,
∴AM=3;
②当
的值为6时,四边形
是菱形.
当四边形
是菱形时,MA=MD,
∵∠DAM=60°,
∴△AMD是等边三角形,
∴AM=AD=6.
-
科目: 来源: 题型:
查看答案和解析>>【题目】探究题:已知:如图,
,
.求证:
.
老师要求学生在完成这道教材上的题目证明后,尝试对图形进行变形,继续做拓展探究,看看有什么新发现?
(1)小颖首先完成了对这道题的证明,在证明过程中她用到了平行线的一条性质,小颖用到的平行线性质可能是 .
(2)接下来,小颖用《几何画板》对图形进行了变式,她先画了两条平行线
,然后在平行线间画了一点
,连接
后,用鼠标拖动点
,分别得到了图
,小颖发现图
正是上面题目的原型,于是她由上题的结论猜想到图
和
图中的与
之间也可能存在着某种数量关系.于是她利用《几何画板》的度量与计算功能,找到了这三个角之间的数量关系.请你在小颖操作探究的基础上,继续完成下面的问题:
(ⅰ)猜想图
中
与
之间的数量关系并加以证明;(ⅱ)补全图
,直接写出
与
之间的数量关系: . -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,以
的斜边
为边,在
的同侧作正方形
,
,
交于点
,连接
.若
,
,则
________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一副三角板
和
拼合在一起,边
与
重合,
,
,
,
.当点
从点
出发沿
向下滑动时,点
同时从点
出发沿射线
向右滑动.当点
从点
滑动到点
时,连接
,则
的面积最大值为_______
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在一个单位面积为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,……是斜边在x轴上,且斜边长分别为2,4,6,……的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,点A2019的横坐标为( )

A. 1010B.
C. 1008D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】解方程组:(1)
(用代入消元法);(2)
(用加减消元法) -
科目: 来源: 题型:
查看答案和解析>>【题目】“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70千米
小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪A的正前方60米处的C点,过了5秒后,测得小汽车所在的B点与车速检测仪A之间的距离为100米.
求BC间的距离;
这辆小汽车超速了吗?请说明理由.
【答案】这辆小汽车没有超速.
【解析】
(1)根据勾股定理求出BC的长;
(2)直接求出小汽车的时速,进行比较得出答案.(1)在Rt△ABC中,AC=60 m,
AB=100 m,且AB为斜边,根据勾股定理,得BC=80 m.
(2)这辆小汽车没有超速.
理由:∵80÷5=16(m/s),
而16 m/s=57.6 km/h,57.6<70,
∴这辆小汽车没有超速.
【点睛】
考查勾股定理的应用,熟练掌握勾股定理是解题的关键.
【题型】解答题
【结束】
19【题目】已知:如图,线段AC和BD相交于点G,连接AB,CD,E是CD上一点,F是DG上一点,
,且
.
求证:
;
若
,
,求
的度数.
相关试题