【题目】如图,在四边形ABCD中,∠C=50°,∠B=∠D=90°,E,F分别是BC,DC上的点,当△AEF的周长最小时,∠EAF=________度。
![]()
参考答案:
【答案】80°
【解析】
据要使△AEF的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠A′+∠A″=∠HAA′=50°,进而得出∠EAB+∠FAD=50°,即可得出答案.
解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于E,交CD于F,则A′A″即为△AEF的周长最小值.作DA延长线AH,
![]()
∵∠C=50°,
∴∠DAB=130°,
∴∠HAA′=50°,
∴∠A′+∠A″=∠HAA′=50°,
∵∠A′=∠EAB,∠A″=∠FAD,
∴∠EAB+∠FAD=50°,
∴∠EAF=130°-50°=80°,
故答案为:80°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了看一种图钉落地后钉尖着地的概率有多大,小明作了
次试验,其中钉尖着地的次数是
次.下列说法错误的是( )A. 钉尖着地的频率是

B. 前
次试验结束后,钉尖着地的次数一定是
次C. 钉尖着地的概率大约是

D. 随着试验次数的增加,钉尖着地的频率稳定在

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,如图,点B、F、C、E在同一直线上,AC、DF相交于点G,AB⊥BE,垂足为B,DE⊥BE,垂足为E,且AC=DF,BF=EC.求证:

(1)△ABC≌△DEF;
(2)FG=CG.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)如图,已知∠MAN=120°,AC平分∠MAN,∠ABC=∠ADC=90°,则能得到如下两个结论:①DC=BC;②AD+AB=AC. 请你证明结论②.

(2)如图,把(1)中的条件“∠ABC=∠ADC=90°”改为∠ABC+∠ADC=180°,其他条件不变,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.

(3)如图3,如果D在AM的反向延长线上,把(1)中的条件“∠ABC=∠ADC=90°”改为∠ABC=∠ADC,其他条件不变,(1)中的结论是否仍然成立?若成立,请直接回答;若不成立,你又能得出什么结论,直接写出你的结论.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC为等边三角形,D、E分别是AC、BC上的点,且AD=CE,AE与BD相交于点P,BF⊥AE于点F,BP=8,则PF=

-
科目: 来源: 题型:
查看答案和解析>>【题目】现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是( )
A.
B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】△ABC在平面直角坐标系中的位置如图所示.A(2,3),B(3,1),C(-2,-2)三点在格点上.

(1)作出△ABC关于y轴对称的△A1B1C1;
(2)直接写出△ABC关于x轴对称的△A2B2C2的各点坐标;
(3)求出△ABC的周长。.
相关试题