【题目】(1)如图,已知∠MAN=120°,AC平分∠MAN,∠ABC=∠ADC=90°,则能得到如下两个结论:①DC=BC;②AD+AB=AC. 请你证明结论②.
![]()
(2)如图,把(1)中的条件“∠ABC=∠ADC=90°”改为∠ABC+∠ADC=180°,其他条件不变,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
![]()
(3)如图3,如果D在AM的反向延长线上,把(1)中的条件“∠ABC=∠ADC=90°”改为∠ABC=∠ADC,其他条件不变,(1)中的结论是否仍然成立?若成立,请直接回答;若不成立,你又能得出什么结论,直接写出你的结论.
![]()
参考答案:
【答案】(1)见解析;(2)(1)中的结论仍然成立,证明见解析;(3)①DC=BC成立;②不成立,AB﹣AD=AC.
【解析】
(1)由已知易证得△ADC≌△ABC,可得AD=AB,根据已知可得∠ACD=30°可得AC=2AD,即可得结论.
(2)以上结论仍成立;作辅助线CE⊥AD,CF⊥AB,首先证得△ACF≌△ACE,可得CF=CE,即可证得△CFB≌△CED,即可得(1)中结论.
(3)同(2)理作辅助线可得DC=BC成立,AB﹣AD=AC.
解:(1)∵AC平分∠MAN,
∴∠DAC=∠BAC=60°,
∵∠ABC=∠ADC=90°,AC为公共边,
∴△ADC≌△ABC(AAS),
∴AD=AB,DC=BC①;
∵∠DCA=30°,
∴AC=2AD=AD+AB②;
(2)如图:作辅助线CF⊥AB,CE⊥AD,
![]()
∵AC平分∠MAN,
∴∠DAC=∠BAC=60°,
又∵CF⊥AB,CE⊥AD,且AC为公共边,
∴△ACF≌△ACE(AAS),即CF=CE①;
∵∠ABC+∠ADC=180°,∠MAN=120°,
∴∠DCB=180°﹣120°=60°,
∵在直角三角形AFC中∠ACF=30°,
∴∠DCA+∠FCB=30°,
∵在直角三角形AEC中∠DCA+∠DCE=30°,
∴∠FCB=∠DCE②;
由CE⊥AD,CF⊥AB,且已证得条件①②,
∴△CED≌△CFB(ASA),
∴DC=BC;ED=FB;
∵在直角△ACF中,AC=2AF,在直角△ACE中,AC=2AE,即AC=AE+AF,
已证得ED=FB,
∴AC=AD+AB;
(3)①DC=BC成立;②不成立,AB﹣AD=AC.
故答案为:(1)见解析;(2)(1)中的结论仍然成立,证明见解析;(3)①DC=BC成立;②不成立,AB﹣AD=AC.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC、△BDE都是等腰直角三角形,∠ABC=∠DBE=90°,连接AE、CD交于点F,连接BF.求证:
(1)AE=CD;
(2)BF平分∠AFD.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如果一个正整数能表示成两个连续偶数的平方差,那么这个正整数为“神秘数”.
如:



因此,4,12,20这三个数都是神秘数.
(1)28和2012这两个数是不是神秘数?为什么?
(2)设两个连续偶数为
和
(其中
为非负整数),由这两个连续偶数构造的神秘数是4的倍数,请说明理由. (3)两个连续奇数的平方差(取正数)是不是神秘数?请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某学校“体育课外活动兴趣小组”,开设了以下体育课外活动项目:A.足球 B.乒乓球C.羽毛球 D.篮球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:
(1)这次被调查的学生共有 人,在扇形统计图中“D”对应的圆心角的度数为 ;
(2)请你将条形统计图补充完整;
(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加市里组织的乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠BAC=∠ACD=90°,∠ABC=∠ADC,CE⊥AD,且BE平分∠ABC,则下列结论:①AD=BC;②∠ACE=∠ABC;③∠ECD+∠EBC=∠BEC;④∠CEF=∠CFE.其中正的是( )

A. ①②B. ①③④C. ①②④D. ①②③④
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(4,3)、B(4,1),把△ABC绕点C逆时针旋转90°后得到△A1B1C.

(1)画出△A1B1C,直接写出点A1、B1的坐标;
(2)求在旋转过程中,△ABC所扫过的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,CD⊥AB,EF⊥AB,垂足分别为D、F,∠1=∠2,若∠A=65°,∠B=45°,求∠AGD的度数.

相关试题