【题目】如图,AD是△ABC的高,CE是△ABC的中线.
(1)若AD=12,BD=16,求DE;
(2)已知点F是中线CE的中点,连接DF,若∠AEC=57°,∠DFE=90°,求∠BCE的度数.
![]()
参考答案:
【答案】(1)DE=10;(2)∠BCE=19°.
【解析】
(1)根据勾股定理和直角三角形斜边上的中线等于斜边的一半即可得到结论;
(2)由DE=DC得到∠DEC=∠DCE,由DE=BE得到∠B=∠EDB,由此根据外角的性质来求∠BCE的度数.
(1)∵AD⊥BC,
∴∠ADB=90°,
∴AB=
=20,
∵CE是中线,
∴DE是斜边AB上的中线,
∴DE=
AB=10;
(2)∵DF⊥CF,F是CF的中点,
∴DE=DC,
∴∠DEC=∠DCE,
∴∠EDB=∠DEC+∠DCE=2∠BCE,
∵DE=BE,
∴∠B=∠EDB,
∴∠B=2∠BCE,
∴∠AEC=3∠BCE=57°,则∠BCE=19°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示的曲线是函数y=
(m为常数)图象的一支.
(1)求常数m的取值范围;
(2)若该函数的图象与正比例函数y=2x的图象在第一象限的交点为A(2,n),求点A的坐标及反比例
函数的解析式.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某学校为了庆祝校园艺术节,准备购买一批盆花布置校园.已知1盆A种花和2盆B种花一共需13元,2盆A种花和1盆B种花一共需11元.
(1)求1盆A种花和1盒B种花的售价各是多少元?
(2)学校准备购进这两种盆花共100盆,并且A种盆花的数量不超过B种盆花数量的2倍,请求出A种盆花的数量最多是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知A(2,-3)、P(3,
)、Q(-5,b)都在反比例函数的图象y=
(k≠0)上.(1)求此反比例函数解析式;
(2)求a+
的值;(3)若反比例函数y=
经过A′(2,3),点P和点Q关于y轴的对称点P′、Q′在反比例函数y=
的图象上吗?通过计算说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】某公司欲招聘一名部门经理,对甲、乙、丙三名候选人进行了三项素质测试.各项测试成绩如表格所示:
测试项目
测试成绩
甲
乙
丙
专业知识
74
87
90
语言能力
58
74
70
综合素质
87
43
50
(1)如果根据三次测试的平均成绩确定人选,那么谁将被录用?
(2)根据实际需要,公司将专业知识、语言能力和综合素质三项测试得分按4:3:1的比例确定每个人的测试总成绩,此时谁将被录用?
(3)请重新设计专业知识、语言能力和综合素质三项测试得分的比例来确定每个人的测试总成绩,使得乙被录用,若重新设计的比例为x:y:1,且x+y+1=10,则x= ,y= .(写出x与y的一组整数值即可).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在长方形OABC中,O为平面直角坐标系的原点,点A的坐标为(a,0),点C的坐标为(0,b)且a、b满足
+|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)点B的坐标为 ;当点P移动3.5秒时,点P的坐标为 ;
(2)在移动过程中,当点P到x轴的距离为4个单位长度时,求点P移动的时间;
(3)在O﹣C﹣B的线路移动过程中,是否存在点P使△OBP的面积是10,若存在求出点P移动的时间;若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系xOy中,一次函数y=3x+2的图象与y轴交于点A,与反比例函数y=
(k≠0)在第一象限内的图象交于点B,且点B的横坐标为1.过点A作AC⊥y轴交反比例函数y=
(k≠0)的图象于点C,连接BC.(1)求反比例函数的表达式.
(2)求△ABC的面积.

相关试题